Distinguishing Orthodontic Experts From Laypersons Through Gaze Analysis

Visual inspection is an important process conducted as an initial diagnostic step in medical examinations. It is assumed that the gaze movements of an orthodontist (expert) differ from those of a layperson. In this study, to examine whether the degree of proficiency in conducting a visual examinatio...

Full description

Bibliographic Details
Main Authors: Aoyagi, S. (Author), Hiroe, M. (Author), Ito, K. (Author), Kamahara, J. (Author), Nagamatsu, T. (Author), Nagata, J. (Author), Sao, H. (Author), Takada, K. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2023
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 02514nam a2200457Ia 4500
001 10.1109-ACCESS.2023.3271990
008 230529s2023 CNT 000 0 und d
020 |a 21693536 (ISSN) 
245 1 0 |a Distinguishing Orthodontic Experts From Laypersons Through Gaze Analysis 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2023 
300 |a 10 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/ACCESS.2023.3271990 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159686010&doi=10.1109%2fACCESS.2023.3271990&partnerID=40&md5=5502e25d2803c912e2e1bf1739467140 
520 3 |a Visual inspection is an important process conducted as an initial diagnostic step in medical examinations. It is assumed that the gaze movements of an orthodontist (expert) differ from those of a layperson. In this study, to examine whether the degree of proficiency in conducting a visual examination can be estimated from gaze movement, we conducted a gaze measurement experiment in which facial images (frontal and lateral images of three patients) were viewed by ten experts and ten laypersons. The performance in discriminating whether a subject was an expert or layperson exhibited a certain improvement when applying an aggregation method for the gaze data, that is, the grid gaze frequency and AOI gaze frequency. We examined whether proficiency levels could be determined using machine learning techniques. The results demonstrated that our method distinguished experts and laypersons relatively effectively using gaze frequency based on the grid and area of interest set by an expert for each face part. © 2013 IEEE. 
650 0 4 |a Artificial intelligence 
650 0 4 |a Diagnosis 
650 0 4 |a Expertise 
650 0 4 |a eye tracking 
650 0 4 |a Eye tracking 
650 0 4 |a Eye-tracking 
650 0 4 |a Frequency conversions 
650 0 4 |a Frequency measurements 
650 0 4 |a gaze 
650 0 4 |a Gaze 
650 0 4 |a Gaze-tracking 
650 0 4 |a Learning systems 
650 0 4 |a machine learning 
650 0 4 |a Machine-learning 
650 0 4 |a Medical diagnostic imaging 
650 0 4 |a Medical imaging 
650 0 4 |a orthodontist 
650 0 4 |a Orthodontist 
700 1 0 |a Aoyagi, S.  |e author 
700 1 0 |a Hiroe, M.  |e author 
700 1 0 |a Ito, K.  |e author 
700 1 0 |a Kamahara, J.  |e author 
700 1 0 |a Nagamatsu, T.  |e author 
700 1 0 |a Nagata, J.  |e author 
700 1 0 |a Sao, H.  |e author 
700 1 0 |a Takada, K.  |e author 
773 |t IEEE Access