Effective brain state estimation during propofol-induced sedation using advanced EEG microstate spectral analysis

Brain states are patterns of neuronal synchrony, and the electroencephalogram (EEG) microstate provides a promising tool to characterize and analyze the synchronous neural firing. However, the topographical spectral information for each predominate microstate is still unclear during the switch of co...

Full description

Bibliographic Details
Main Authors: Cao, Z. (Author), Li, J. (Author), Li, Y. (Author), Liu, Z. (Author), Shi, W. (Author), Wang, G. (Author), Wang, Q. (Author), Yan, X. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04924nam a2201093Ia 4500
001 10.1109-JBHI.2020.3008052
008 220427s2021 CNT 000 0 und d
020 |a 21682194 (ISSN) 
245 1 0 |a Effective brain state estimation during propofol-induced sedation using advanced EEG microstate spectral analysis 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/JBHI.2020.3008052 
520 3 |a Brain states are patterns of neuronal synchrony, and the electroencephalogram (EEG) microstate provides a promising tool to characterize and analyze the synchronous neural firing. However, the topographical spectral information for each predominate microstate is still unclear during the switch of consciousness, such as sedation, and the practical usage of the EEG microstate is worth probing. Also, the mechanism behind the anesthetic-induced alternations of brain states remains poorly understood. In this study, an advanced EEG microstate spectral analysis was utilized using multivariate empirical mode decomposition in Hilbert-Huang transform. The practicability was further investigated in scalp EEG recordings during the propofol-induced transition of consciousness. The process of transition from the awake baseline to moderate sedation was accompanied by apparent increases in microstate (A, B, and F) energy, especially in the whole-brain delta band, frontal alpha band and beta band. In comparison to other effective EEG-based parameters that commonly used to measure anesthetic depth, using the selected spectral features reached better performance (80% sensitivity, 90% accuracy) to estimate the brain states during sedation. The changes in microstate energy also exhibited high correlations with individual behavioral data during sedation. In a nutshell, the EEG microstate spectral analysis is an effective method to estimate brain states during propofol-induced sedation, giving great insights into the underlying mechanism. The generated spectral features can be promising markers to dynamically assess the consciousness level. © 2013 IEEE. 
650 0 4 |a adult 
650 0 4 |a algorithm 
650 0 4 |a altered state of consciousness 
650 0 4 |a anesthesia level 
650 0 4 |a Anesthetic-depth 
650 0 4 |a Anesthetics 
650 0 4 |a Article 
650 0 4 |a behavior 
650 0 4 |a Behavioral data 
650 0 4 |a bispectral index 
650 0 4 |a blood sampling 
650 0 4 |a brain 
650 0 4 |a Brain 
650 0 4 |a brain analysis 
650 0 4 |a brain mapping 
650 0 4 |a Brain Mapping 
650 0 4 |a clinical article 
650 0 4 |a conscious sedation 
650 0 4 |a consciousness 
650 0 4 |a consciousness 
650 0 4 |a Consciousness 
650 0 4 |a consciousness level 
650 0 4 |a continuous infusion 
650 0 4 |a correlation analysis 
650 0 4 |a decomposition 
650 0 4 |a disease marker 
650 0 4 |a dorsal anterior cingulate cortex 
650 0 4 |a Electroencephalogram 
650 0 4 |a Electro-encephalogram (EEG) 
650 0 4 |a electroencephalogram microstate spectral analysis 
650 0 4 |a electroencephalography 
650 0 4 |a electroencephalography 
650 0 4 |a Electroencephalography 
650 0 4 |a Electroencephalography 
650 0 4 |a empirical mode decomposition 
650 0 4 |a event related potential 
650 0 4 |a female 
650 0 4 |a Fourier transform 
650 0 4 |a functional connectivity 
650 0 4 |a Hilbert Huang transform 
650 0 4 |a Hilbert Huang transforms 
650 0 4 |a human 
650 0 4 |a human cell 
650 0 4 |a human experiment 
650 0 4 |a Humans 
650 0 4 |a hypnosis 
650 0 4 |a Induced transitions 
650 0 4 |a male 
650 0 4 |a mathematical phenomena 
650 0 4 |a Mathematical transformations 
650 0 4 |a microstate spectral analysis 
650 0 4 |a multivariate empirical mode decomposition 
650 0 4 |a Multivariate empirical mode decomposition (MEMD) 
650 0 4 |a normal human 
650 0 4 |a principal component analysis 
650 0 4 |a program effectiveness 
650 0 4 |a propofol 
650 0 4 |a propofol 
650 0 4 |a Propofol 
650 0 4 |a scalp 
650 0 4 |a sedation 
650 0 4 |a sedation 
650 0 4 |a signal noise ratio 
650 0 4 |a signal processing 
650 0 4 |a Signal processing 
650 0 4 |a Spectral feature 
650 0 4 |a Spectral information 
650 0 4 |a spectroscopy 
650 0 4 |a Spectrum analysis 
650 0 4 |a support vector machine 
650 0 4 |a topography 
650 0 4 |a transition of consciousness 
650 0 4 |a wakefulness 
700 1 |a Cao, Z.  |e author 
700 1 |a Li, J.  |e author 
700 1 |a Li, Y.  |e author 
700 1 |a Liu, Z.  |e author 
700 1 |a Shi, W.  |e author 
700 1 |a Wang, G.  |e author 
700 1 |a Wang, Q.  |e author 
700 1 |a Yan, X.  |e author 
773 |t IEEE Journal of Biomedical and Health Informatics