An Ensemble of Hyperdimensional Classifiers: Hardware-Friendly Short-Latency Seizure Detection with Automatic iEEG Electrode Selection

We propose a new algorithm for detecting epileptic seizures. Our algorithm first extracts three features, namely mean amplitude, line length, and local binary patterns that are fed to an ensemble of classifiers using hyperdimensional (HD) computing. These features are embedded into prototype vectors...

Full description

Bibliographic Details
Main Authors: Benatti, S. (Author), Benini, L. (Author), Burrello, A. (Author), Rahimi, A. (Author), Schindler, K. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04112nam a2200793Ia 4500
001 10.1109-JBHI.2020.3022211
008 220427s2021 CNT 000 0 und d
020 |a 21682194 (ISSN) 
245 1 0 |a An Ensemble of Hyperdimensional Classifiers: Hardware-Friendly Short-Latency Seizure Detection with Automatic iEEG Electrode Selection 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/JBHI.2020.3022211 
520 3 |a We propose a new algorithm for detecting epileptic seizures. Our algorithm first extracts three features, namely mean amplitude, line length, and local binary patterns that are fed to an ensemble of classifiers using hyperdimensional (HD) computing. These features are embedded into prototype vectors representing ictal (during seizures) and interictal (between seizures) brain states are constructed. These vectors can be computed at different spatial scales ranging from a single electrode up to many electrodes. This flexibility allows our algorithm to identify the electrodes that discriminate best between ictal and interictal brain states. We assess our algorithm on the SWEC-ETHZ iEEG dataset that includes 99 short-Time iEEG seizures recorded with 36 to 100 electrodes from 16 drug-resistant epilepsy patients. Using   |- fold cross-validation and all electrodes, our algorithm surpasses state-of-The-Art algorithms yielding significantly shorter latency (8.81 s vs. 11.57 s) in seizure onset detection, and higher specificity (97.31% vs. 94.84%) and accuracy (96.85% vs. 95.42%). We can further reduce the latency of our algorithm to 3.74 s by allowing a slightly higher percentage of false alarms (2% specificity loss). Using only the top 10% of the electrodes ranked by our algorithm, we still maintain superior latency, sensitivity, and specificity compared to the other algorithms with all the electrodes. We finally demonstrate the suitability of our algorithm to deployment on low-cost embedded hardware platforms, thanks to its robustness to noise/artifacts affecting the signal, its low computational complexity, and the small memory-footprint on a RISC-V microcontroller. © 2013 IEEE. 
650 0 4 |a accuracy 
650 0 4 |a action potential 
650 0 4 |a algorithm 
650 0 4 |a Algorithms 
650 0 4 |a anxiety 
650 0 4 |a Article 
650 0 4 |a artificial neural network 
650 0 4 |a brain 
650 0 4 |a Brain 
650 0 4 |a classifier 
650 0 4 |a diagnostic imaging 
650 0 4 |a dynamics 
650 0 4 |a electrode 
650 0 4 |a Electrode selection 
650 0 4 |a Electrode selection 
650 0 4 |a Electrodes 
650 0 4 |a Electrodes 
650 0 4 |a electroencephalography 
650 0 4 |a Electroencephalography 
650 0 4 |a electrostimulation 
650 0 4 |a ensemble of classifiers 
650 0 4 |a Ensemble of classifiers 
650 0 4 |a epilepsy 
650 0 4 |a epileptic patient 
650 0 4 |a Epileptic seizures 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a hyperdimensional computing 
650 0 4 |a ieeg 
650 0 4 |a latent period 
650 0 4 |a learning algorithm 
650 0 4 |a line length 
650 0 4 |a local binary patterns 
650 0 4 |a Local binary patterns 
650 0 4 |a Low computational complexity 
650 0 4 |a low-latency seizure detection 
650 0 4 |a machine learning 
650 0 4 |a nerve cell network 
650 0 4 |a Robustness to noise 
650 0 4 |a seizure 
650 0 4 |a seizure 
650 0 4 |a Seizures 
650 0 4 |a sensitivity and specificity 
650 0 4 |a signal noise ratio 
650 0 4 |a single photon emission computed tomography 
650 0 4 |a Small memory footprint 
650 0 4 |a speech intelligibility 
650 0 4 |a State-of-the-art algorithms 
650 0 4 |a support vector machine 
650 0 4 |a symbolic dynamics 
650 0 4 |a validation process 
700 1 |a Benatti, S.  |e author 
700 1 |a Benini, L.  |e author 
700 1 |a Burrello, A.  |e author 
700 1 |a Rahimi, A.  |e author 
700 1 |a Schindler, K.  |e author 
773 |t IEEE Journal of Biomedical and Health Informatics