Generalized Fixation Invariant Nuclei Detection through Domain Adaptation Based Deep Learning

Nucleus detection is a fundamental task in histological image analysis and an important tool for many follow up analyses. It is known that sample preparation and scanning procedure of histological slides introduce a great amount of variability to the histological images and poses challenges for auto...

Full description

Bibliographic Details
Main Authors: Bova, G.S (Author), Hognas, G. (Author), Ruusuvuori, P. (Author), Valkonen, M. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04126nam a2200985Ia 4500
001 10.1109-JBHI.2020.3039414
008 220427s2021 CNT 000 0 und d
020 |a 21682194 (ISSN) 
245 1 0 |a Generalized Fixation Invariant Nuclei Detection through Domain Adaptation Based Deep Learning 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/JBHI.2020.3039414 
520 3 |a Nucleus detection is a fundamental task in histological image analysis and an important tool for many follow up analyses. It is known that sample preparation and scanning procedure of histological slides introduce a great amount of variability to the histological images and poses challenges for automated nucleus detection. Here, we studied the effect of histopathological sample fixation on the accuracy of a deep learning based nuclei detection model trained with hematoxylin and eosin stained images. We experimented with training data that includes three methods of fixation; PAXgene, formalin and frozen, and studied the detection accuracy results of various convolutional neural networks. Our results indicate that the variability introduced during sample preparation affects the generalization of a model and should be considered when building accurate and robust nuclei detection algorithms. Our dataset includes over 67 000 annotated nuclei locations from 16 patients and three different sample fixation types. The dataset provides excellent basis for building an accurate and robust nuclei detection model, and combined with unsupervised domain adaptation, the workflow allows generalization to images from unseen domains, including different tissues and images from different labs. © 2013 IEEE. 
650 0 4 |a accuracy 
650 0 4 |a algorithm 
650 0 4 |a Article 
650 0 4 |a artificial neural network 
650 0 4 |a cancer grading 
650 0 4 |a cell nucleus 
650 0 4 |a Cell Nucleus 
650 0 4 |a colonoscopy 
650 0 4 |a computer assisted tomography 
650 0 4 |a computer language 
650 0 4 |a computer model 
650 0 4 |a controlled study 
650 0 4 |a convolutional neural network 
650 0 4 |a Convolutional neural networks 
650 0 4 |a decision tree 
650 0 4 |a deep learning 
650 0 4 |a Deep learning 
650 0 4 |a Deep learning 
650 0 4 |a Deep Learning 
650 0 4 |a Detection accuracy 
650 0 4 |a detection algorithm 
650 0 4 |a digital pathology 
650 0 4 |a domain adaptation 
650 0 4 |a Domain adaptation 
650 0 4 |a electroencephalography 
650 0 4 |a eosin 
650 0 4 |a follow up 
650 0 4 |a Follow up 
650 0 4 |a formaldehyde 
650 0 4 |a formalin-fixed 
650 0 4 |a frozen section 
650 0 4 |a frozen section 
650 0 4 |a gray matter 
650 0 4 |a hematoxylin 
650 0 4 |a histogram 
650 0 4 |a Histological images 
650 0 4 |a Histological Techniques 
650 0 4 |a histology 
650 0 4 |a histopathology 
650 0 4 |a human 
650 0 4 |a human tissue 
650 0 4 |a Humans 
650 0 4 |a image analysis 
650 0 4 |a image processing 
650 0 4 |a Image Processing, Computer-Assisted 
650 0 4 |a image quality 
650 0 4 |a image reconstruction 
650 0 4 |a image segmentation 
650 0 4 |a immunohistochemistry 
650 0 4 |a knee 
650 0 4 |a learning 
650 0 4 |a machine learning 
650 0 4 |a nerve cell network 
650 0 4 |a Neural Networks, Computer 
650 0 4 |a nuclei detection 
650 0 4 |a Nuclei detections 
650 0 4 |a PAXgene-fixed 
650 0 4 |a predictive value 
650 0 4 |a prostatectomy 
650 0 4 |a Sample preparation 
650 0 4 |a support vector machine 
650 0 4 |a tissue fixation 
650 0 4 |a tissue fixation 
650 0 4 |a training 
650 0 4 |a Training data 
650 0 4 |a validation process 
650 0 4 |a white matter 
650 0 4 |a workflow 
700 1 |a Bova, G.S.  |e author 
700 1 |a Hognas, G.  |e author 
700 1 |a Ruusuvuori, P.  |e author 
700 1 |a Valkonen, M.  |e author 
773 |t IEEE Journal of Biomedical and Health Informatics