PulseGAN: Learning to Generate Realistic Pulse Waveforms in Remote Photoplethysmography

Remote photoplethysmography (rPPG) is a non-contact technique for measuring cardiac signals from facial videos. High-quality rPPG pulse signals are urgently demanded in many fields, such as health monitoring and emotion recognition. However, most of the existing rPPG methods can only be used to get...

Full description

Bibliographic Details
Main Authors: Chen, H. (Author), Chen, X. (Author), Cheng, J. (Author), Li, C. (Author), Liu, Y. (Author), Song, R. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04181nam a2200805Ia 4500
001 10.1109-JBHI.2021.3051176
008 220427s2021 CNT 000 0 und d
020 |a 21682194 (ISSN) 
245 1 0 |a PulseGAN: Learning to Generate Realistic Pulse Waveforms in Remote Photoplethysmography 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/JBHI.2021.3051176 
520 3 |a Remote photoplethysmography (rPPG) is a non-contact technique for measuring cardiac signals from facial videos. High-quality rPPG pulse signals are urgently demanded in many fields, such as health monitoring and emotion recognition. However, most of the existing rPPG methods can only be used to get average heart rate (HR) values due to the limitation of inaccurate pulse signals. In this paper, a new framework based on generative adversarial network, called PulseGAN, is introduced to generate realistic rPPG pulse signals through denoising the chrominance (CHROM) signals. Considering that the cardiac signal is quasi-periodic and has apparent time-frequency characteristics, the error losses defined in time and spectrum domains are both employed with the adversarial loss to enforce the model generating accurate pulse waveforms as its reference. The proposed framework is tested on three public databases. The results show that the PulseGAN framework can effectively improve the waveform quality, thereby enhancing the accuracy of HR, the interbeat interval (IBI) and the related heart rate variability (HRV) features. The proposed method significantly improves the quality of waveforms compared to the input CHROM signals, with the mean absolute error of AVNN (the average of all normal-to-normal intervals) reduced by 41.19%, 40.45%, 41.63%, and the mean absolute error of SDNN (the standard deviation of all NN intervals) reduced by 37.53%, 44.29%, 58.41%, in the cross-database test on the UBFC-RPPG, PURE, and MAHNOB-HCI databases, respectively. This framework can be easily integrated with other existing rPPG methods to further improve the quality of waveforms, thereby obtaining more reliable IBI features and extending the application scope of rPPG techniques. © 2013 IEEE. 
650 0 4 |a Adversarial networks 
650 0 4 |a algorithm 
650 0 4 |a algorithm 
650 0 4 |a Algorithms 
650 0 4 |a Article 
650 0 4 |a Biomedical signal processing 
650 0 4 |a breathing rate 
650 0 4 |a classification algorithm 
650 0 4 |a Database systems 
650 0 4 |a electroencephalography 
650 0 4 |a Emotion recognition 
650 0 4 |a error 
650 0 4 |a Errors 
650 0 4 |a eye movement 
650 0 4 |a face 
650 0 4 |a Face 
650 0 4 |a feature extraction 
650 0 4 |a generative adversarial network 
650 0 4 |a head movement 
650 0 4 |a Health monitoring 
650 0 4 |a Heart 
650 0 4 |a heart rate 
650 0 4 |a Heart Rate 
650 0 4 |a Heart rate estimation 
650 0 4 |a heart rate variability 
650 0 4 |a heart rate variability 
650 0 4 |a Heart rate variability 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a image quality 
650 0 4 |a image segmentation 
650 0 4 |a mathematical analysis 
650 0 4 |a mathematical model 
650 0 4 |a Mean absolute error 
650 0 4 |a Non-contact techniques 
650 0 4 |a photoelectric plethysmography 
650 0 4 |a Photoplethysmography 
650 0 4 |a Photoplethysmography 
650 0 4 |a pulse waveform 
650 0 4 |a remote photoplethysmography 
650 0 4 |a RR interval 
650 0 4 |a signal noise ratio 
650 0 4 |a signal processing 
650 0 4 |a Signal Processing, Computer-Assisted 
650 0 4 |a Standard deviation 
650 0 4 |a Time frequency characteristics 
650 0 4 |a time series analysis 
650 0 4 |a training 
650 0 4 |a videorecording 
650 0 4 |a visual stimulation 
650 0 4 |a waveform 
700 1 |a Chen, H.  |e author 
700 1 |a Chen, X.  |e author 
700 1 |a Cheng, J.  |e author 
700 1 |a Li, C.  |e author 
700 1 |a Liu, Y.  |e author 
700 1 |a Song, R.  |e author 
773 |t IEEE Journal of Biomedical and Health Informatics