Deep Survival Machines: Fully Parametric Survival Regression and Representation Learning for Censored Data with Competing Risks

We describe a new approach to estimating relative risks in time-to-event prediction problems with censored data in a fully parametric manner. Our approach does not require making strong assumptions of constant proportional hazards of the underlying survival distribution, as required by the Cox-propo...

Full description

Bibliographic Details
Main Authors: Dubrawski, A. (Author), Li, X. (Author), Nagpal, C. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02625nam a2200589Ia 4500
001 10.1109-JBHI.2021.3052441
008 220427s2021 CNT 000 0 und d
020 |a 21682194 (ISSN) 
245 1 0 |a Deep Survival Machines: Fully Parametric Survival Regression and Representation Learning for Censored Data with Competing Risks 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/JBHI.2021.3052441 
520 3 |a We describe a new approach to estimating relative risks in time-to-event prediction problems with censored data in a fully parametric manner. Our approach does not require making strong assumptions of constant proportional hazards of the underlying survival distribution, as required by the Cox-proportional hazard model. By jointly learning deep nonlinear representations of the input covariates, we demonstrate the benefits of our approach when used to estimate survival risks through extensive experimentation on multiple real world datasets with different levels of censoring. We further demonstrate advantages of our model in the competing risks scenario. To the best of our knowledge, this is the first work involving fully parametric estimation of survival times with competing risks in the presence of censoring. © 2013 IEEE. 
650 0 4 |a article 
650 0 4 |a bioinformatics 
650 0 4 |a censored regression 
650 0 4 |a Competing risks 
650 0 4 |a controlled study 
650 0 4 |a Cox proportional hazard model 
650 0 4 |a deep learning 
650 0 4 |a deep learning 
650 0 4 |a Deep learning 
650 0 4 |a graphical models 
650 0 4 |a Hazards 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a mixture of experts 
650 0 4 |a Models, Statistical 
650 0 4 |a New approaches 
650 0 4 |a Parameter estimation 
650 0 4 |a Parametric estimation 
650 0 4 |a prediction 
650 0 4 |a proportional hazards model 
650 0 4 |a Proportional Hazards Models 
650 0 4 |a Real-world datasets 
650 0 4 |a Relative risks 
650 0 4 |a remission 
650 0 4 |a risk 
650 0 4 |a Risk 
650 0 4 |a risk assessment 
650 0 4 |a risk factor 
650 0 4 |a Risk perception 
650 0 4 |a statistical model 
650 0 4 |a survival analysis 
650 0 4 |a Survival analysis 
650 0 4 |a Survival Analysis 
650 0 4 |a Survival distributions 
650 0 4 |a survival time 
650 0 4 |a Time to events 
700 1 |a Dubrawski, A.  |e author 
700 1 |a Li, X.  |e author 
700 1 |a Nagpal, C.  |e author 
773 |t IEEE Journal of Biomedical and Health Informatics