Reducing False Triggering Caused by Irrelevant Mental Activities in Brain-Computer Interface Based on Motor Imagery

In recent years, the brain-computer interface (BCI) based on motor imagery (MI) has been considered as a potential post-stroke rehabilitation technology. However, the recognition of MI relies on the event-related desynchronization (ERD) feature, which has poor task specificity. Further, there is the...

Full description

Bibliographic Details
Main Authors: He, F. (Author), Qi, H. (Author), Tao, X. (Author), Zhou, L. (Author), Zhou, P. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04231nam a2200817Ia 4500
001 10.1109-JBHI.2021.3066610
008 220427s2021 CNT 000 0 und d
020 |a 21682194 (ISSN) 
245 1 0 |a Reducing False Triggering Caused by Irrelevant Mental Activities in Brain-Computer Interface Based on Motor Imagery 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/JBHI.2021.3066610 
520 3 |a In recent years, the brain-computer interface (BCI) based on motor imagery (MI) has been considered as a potential post-stroke rehabilitation technology. However, the recognition of MI relies on the event-related desynchronization (ERD) feature, which has poor task specificity. Further, there is the problem of false triggering (irrelevant mental activities recognized as the MI of the target limb). In this paper, we discuss the feasibility of reducing the false triggering rate using a novel paradigm, in which the steady-state somatosensory evoked potential (SSSEP) is combined with the MI (MI-SSSEP). Data from the target (right hand MI) and nontarget task (rest) were used to establish the recognition model, and three kinds of interference tasks were used to test the false triggering performance. In the MI-SSSEP paradigm, ERD and SSSEP features modulated by MI could be used for recognition, while in the MI paradigm, only ERD features could be used. The results showed that the false triggering rate of interference tasks with SSSEP features was reduced to 29.3%, which was far lower than the 55.5% seen under the MI paradigm with ERD features. Moreover, in the MI-SSSEP paradigm, the recognition rate of the target and nontarget task was also significantly improved. Further analysis showed that the specificity of SSSEP was significantly higher than that of ERD (p < 0.05), but the sensitivity was not significantly different. These results indicated that SSSEP modulated by MI could more specifically decode the target task MI, and thereby may have potential in achieving more accurate rehabilitation training. © 2013 IEEE. 
650 0 4 |a adult 
650 0 4 |a Article 
650 0 4 |a artificial neural network 
650 0 4 |a Brain 
650 0 4 |a brain computer interface 
650 0 4 |a Brain computer interface 
650 0 4 |a brain depth stimulation 
650 0 4 |a Brain-computer interface 
650 0 4 |a Brain-Computer Interfaces 
650 0 4 |a cerebrovascular accident 
650 0 4 |a clinical article 
650 0 4 |a clinical trial 
650 0 4 |a dorsolateral prefrontal cortex 
650 0 4 |a electroencephalography 
650 0 4 |a Electroencephalography 
650 0 4 |a electrostimulation 
650 0 4 |a Event related desynchronization 
650 0 4 |a Evoked Potentials, Somatosensory 
650 0 4 |a false triggering 
650 0 4 |a False triggering 
650 0 4 |a feasibility study 
650 0 4 |a female 
650 0 4 |a hand 
650 0 4 |a Hand 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a imagination 
650 0 4 |a Imagination 
650 0 4 |a machine learning 
650 0 4 |a male 
650 0 4 |a measurement accuracy 
650 0 4 |a Mental activity 
650 0 4 |a mental performance 
650 0 4 |a motor activity 
650 0 4 |a motor cortex 
650 0 4 |a motor evoked potential 
650 0 4 |a motor imagery 
650 0 4 |a neurorehabilitation 
650 0 4 |a Post-stroke rehabilitation 
650 0 4 |a receiver operating characteristic 
650 0 4 |a Recognition models 
650 0 4 |a Rehabilitation training 
650 0 4 |a sensitivity and specificity 
650 0 4 |a signal noise ratio 
650 0 4 |a somatosensory evoked potential 
650 0 4 |a spinal cord injury 
650 0 4 |a steady-state somatosensory evoked potential 
650 0 4 |a Steady-state somatosensory evoked potential (SSSEP) 
650 0 4 |a stroke rehabilitation 
650 0 4 |a support vector machine 
650 0 4 |a Target and non targets 
650 0 4 |a task specificity 
650 0 4 |a visual stimulation 
700 1 |a He, F.  |e author 
700 1 |a Qi, H.  |e author 
700 1 |a Tao, X.  |e author 
700 1 |a Zhou, L.  |e author 
700 1 |a Zhou, P.  |e author 
773 |t IEEE Journal of Biomedical and Health Informatics