Combating Ambiguity for Hash-Code Learning in Medical Instance Retrieval

When encountering a dubious diagnostic case, medical instance retrieval can help radiologists make evidence-based diagnoses by finding images containing instances similar to a query case from a large image database. The similarity between the query case and retrieved similar cases is determined by v...

Full description

Bibliographic Details
Main Authors: Fang, J. (Author), Fu, H. (Author), Liu, J. (Author), Yan, X. (Author), Yan, Y. (Author), Zeng, D. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04126nam a2200865Ia 4500
001 10.1109-JBHI.2021.3082531
008 220427s2021 CNT 000 0 und d
020 |a 21682194 (ISSN) 
245 1 0 |a Combating Ambiguity for Hash-Code Learning in Medical Instance Retrieval 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/JBHI.2021.3082531 
520 3 |a When encountering a dubious diagnostic case, medical instance retrieval can help radiologists make evidence-based diagnoses by finding images containing instances similar to a query case from a large image database. The similarity between the query case and retrieved similar cases is determined by visual features extracted from pathologically abnormal regions. However, the manifestation of these regions often lacks specificity, i.e., different diseases can have the same manifestation, and different manifestations may occur at different stages of the same disease. To combat the manifestation ambiguity in medical instance retrieval, we propose a novel deep framework called Y-Net, encoding images into compact hash-codes generated from convolutional features by feature aggregation. Y-Net can learn highly discriminative convolutional features by unifying the pixel-wise segmentation loss and classification loss. The segmentation loss allows exploring subtle spatial differences for good spatial-discriminability while the classification loss utilizes class-aware semantic information for good semantic-separability. As a result, Y-Net can enhance the visual features in pathologically abnormal regions and suppress the disturbing of the background during model training, which could effectively embed discriminative features into the hash-codes in the retrieval stage. Extensive experiments on two medical image datasets demonstrate that Y-Net can alleviate the ambiguity of pathologically abnormal regions and its retrieval performance outperforms the state-of-the-art method by an average of 9.27% on the returned list of 10. © 2013 IEEE. 
650 0 4 |a accuracy 
650 0 4 |a algorithm 
650 0 4 |a algorithm 
650 0 4 |a Algorithms 
650 0 4 |a Alzheimer disease 
650 0 4 |a Article 
650 0 4 |a Classification (of information) 
650 0 4 |a classification algorithm 
650 0 4 |a Codes (symbols) 
650 0 4 |a content-based image retrieval 
650 0 4 |a Convolution 
650 0 4 |a convolutional features 
650 0 4 |a cryptococcosis 
650 0 4 |a Databases, Factual 
650 0 4 |a deep hashing methods 
650 0 4 |a Diagnosis 
650 0 4 |a diagnostic imaging 
650 0 4 |a Discriminative features 
650 0 4 |a electroencephalography 
650 0 4 |a entropy 
650 0 4 |a factual database 
650 0 4 |a Feature aggregation 
650 0 4 |a glaucoma 
650 0 4 |a Hash functions 
650 0 4 |a hematoma 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a Image coding 
650 0 4 |a image reconstruction 
650 0 4 |a image retrieval 
650 0 4 |a image segmentation 
650 0 4 |a Instance retrieval 
650 0 4 |a Large image database 
650 0 4 |a learning 
650 0 4 |a learning algorithm 
650 0 4 |a machine learning 
650 0 4 |a Medical imaging 
650 0 4 |a Medical instance retrieval 
650 0 4 |a methodology 
650 0 4 |a Military photography 
650 0 4 |a optic disk 
650 0 4 |a Query processing 
650 0 4 |a radiologist 
650 0 4 |a Radiologists 
650 0 4 |a receptive field 
650 0 4 |a Research Design 
650 0 4 |a Retrieval performance 
650 0 4 |a Semantic information 
650 0 4 |a semantics 
650 0 4 |a Semantics 
650 0 4 |a Semantics 
650 0 4 |a Spatial differences 
650 0 4 |a State-of-the-art methods 
650 0 4 |a support vector machine 
650 0 4 |a training 
650 0 4 |a visual field 
700 1 |a Fang, J.  |e author 
700 1 |a Fu, H.  |e author 
700 1 |a Liu, J.  |e author 
700 1 |a Yan, X.  |e author 
700 1 |a Yan, Y.  |e author 
700 1 |a Zeng, D.  |e author 
773 |t IEEE Journal of Biomedical and Health Informatics