Optimal Path Planning of Autonomous Marine Vehicles in Stochastic Dynamic Ocean Flows Using a GPU-Accelerated Algorithm

Autonomous marine vehicles play an essential role in many ocean science and engineering applications. Planning time and energy optimal paths for these vehicles to navigate in stochastic dynamic ocean environments are essential to reduce operational costs. In some missions, they must also harvest sol...

Full description

Bibliographic Details
Main Authors: Chowdhury, R. (Author), Subramani, D. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03753nam a2200601Ia 4500
001 10.1109-JOE.2022.3152514
008 220630s2022 CNT 000 0 und d
020 |a 03649059 (ISSN) 
245 1 0 |a Optimal Path Planning of Autonomous Marine Vehicles in Stochastic Dynamic Ocean Flows Using a GPU-Accelerated Algorithm 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2022 
520 3 |a Autonomous marine vehicles play an essential role in many ocean science and engineering applications. Planning time and energy optimal paths for these vehicles to navigate in stochastic dynamic ocean environments are essential to reduce operational costs. In some missions, they must also harvest solar, wind or wave energy (modeled as a stochastic scalar field) and move in optimal paths that minimize net energy consumption. Markov decision processes (MDPs) provide a natural framework for sequential decision making for robotic agents in such environments. However, building a realistic model and solving the modeled MDP becomes computationally expensive in large-scale real-time applications, warranting the need of parallel algorithms and efficient implementation. In this article, we introduce an efficient end-to-end graphical processing unit (GPU)-accelerated algorithm that 1) builds the MDP model (computing transition probabilities and expected one-step rewards) and 2) solves the MDP to compute an optimal policy. We develop methodical and algorithmic solutions to overcome the limited global memory of GPUs by 1) using a dynamic reduced-order representation of the ocean flows; 2) leveraging the sparse nature of the state transition probability matrix; 3) introducing a neighboring subgrid concept; and 4) proving that it is sufficient to use only the stochastic scalar field’s mean to compute the expected one-step rewards for missions involving energy harvesting from the environment, thereby saving memory and reducing the computational effort. We demonstrate the algorithm on a simulated stochastic dynamic environment and highlight that it builds the MDP model and computes the optimal policy 600–1000 times faster than conventional CPU implementations, making it suitable for real-time use. IEEE 
650 0 4 |a Autonomous underwater vehicles 
650 0 4 |a Autonomous underwater vehicles 
650 0 4 |a Autonomous vehicles 
650 0 4 |a Computational modeling 
650 0 4 |a Computational modelling 
650 0 4 |a Decision making 
650 0 4 |a Energy harvesting 
650 0 4 |a Energy utilization 
650 0 4 |a Graphics processing unit 
650 0 4 |a Heuristic algorithms 
650 0 4 |a Heuristic algorithms 
650 0 4 |a Heuristics algorithm 
650 0 4 |a Iterative methods 
650 0 4 |a Marine applications 
650 0 4 |a Markov processes 
650 0 4 |a Motion planning 
650 0 4 |a Ocean model 
650 0 4 |a Oceanography 
650 0 4 |a Oceans 
650 0 4 |a Optimization 
650 0 4 |a parallel programming 
650 0 4 |a Planning 
650 0 4 |a Program processors 
650 0 4 |a Stochastic models 
650 0 4 |a stochastic ocean modeling 
650 0 4 |a Stochastic ocean modeling 
650 0 4 |a Stochastic processes 
650 0 4 |a Stochastic systems 
650 0 4 |a Stochastics 
650 0 4 |a Transition probabilities 
650 0 4 |a transition probability 
650 0 4 |a Uncertainty 
650 0 4 |a Uncertainty 
650 0 4 |a Value iteration 
650 0 4 |a value iteration (VI) 
650 0 4 |a Vehicle dynamics 
650 0 4 |a Vehicle's dynamics 
650 0 4 |a Wave energy conversion 
700 1 0 |a Chowdhury, R.  |e author 
700 1 0 |a Subramani, D.  |e author 
773 |t IEEE Journal of Oceanic Engineering 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/JOE.2022.3152514