Improved Receivers for Optical Wireless OFDM: An Information Theoretic Perspective

We consider performance enhancement of asymmetrically-clipped optical orthogonal frequency division multiplexing (ACO-OFDM) and related optical OFDM schemes, which are variations of OFDM in intensity-modulated optical wireless communications. Unlike most existing studies on specific designs of impro...

Full description

Bibliographic Details
Main Authors: Huang, N. (Author), Liu, X. (Author), Zhang, W. (Author), Zhou, J. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03290nam a2200541Ia 4500
001 10.1109-TCOMM.2022.3174102
008 220630s2022 CNT 000 0 und d
020 |a 00906778 (ISSN) 
245 1 0 |a Improved Receivers for Optical Wireless OFDM: An Information Theoretic Perspective 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2022 
520 3 |a We consider performance enhancement of asymmetrically-clipped optical orthogonal frequency division multiplexing (ACO-OFDM) and related optical OFDM schemes, which are variations of OFDM in intensity-modulated optical wireless communications. Unlike most existing studies on specific designs of improved receivers, this paper investigates information theoretic limits of all possible receivers. For independent and identically distributed (IID) complex Gaussian inputs, we obtain an exact characterization of information rate of ACO-OFDM with improved receivers for all SNRs. It is proved that the high-SNR gain of improved receivers asymptotically achieve 1/4 bits per channel use, which is equivalent to 3 dB in electrical SNR or 1.5 dB in optical SNR; as the SNR decreases, the maximum achievable SNR gain of improved receivers decreases monotonically to a non-zero low-SNR limit, corresponding to an information rate gain of 36.3%. For practically used constellations, we derive an upper bound on the gain of improved receivers. Numerical results demonstrate that the upper bound can be approached to within 1 dB in optical SNR by combining existing improved receivers and coded modulation. We also show that our information theoretic analyses can be extended to Flip-OFDM and PAM-DMT. Our results imply that, for the considered schemes, improved receivers may reduce the gap to channel capacity significantly at low-to-moderate SNR. IEEE 
650 0 4 |a ACO-OFDM 
650 0 4 |a Artificial intelligence 
650 0 4 |a Asymmetrically-clipped optical orthogonal frequency division multiplexing 
650 0 4 |a channel capacity 
650 0 4 |a Channel's capacity 
650 0 4 |a coded modulation 
650 0 4 |a Coded modulation 
650 0 4 |a Gain 
650 0 4 |a Gain 
650 0 4 |a information rate 
650 0 4 |a Information rates 
650 0 4 |a Information rates 
650 0 4 |a Integrated optics 
650 0 4 |a Integrated optics 
650 0 4 |a intensity modulation 
650 0 4 |a Intensity modulations 
650 0 4 |a Light modulation 
650 0 4 |a OFDM 
650 0 4 |a Optical fiber communication 
650 0 4 |a Optical modulation 
650 0 4 |a Optical orthogonal frequency division multiplexing 
650 0 4 |a Optical receivers 
650 0 4 |a Optical signal processing 
650 0 4 |a optical wireless communications 
650 0 4 |a Optical-wireless communications 
650 0 4 |a orthogonal frequency division multiplexing 
650 0 4 |a Orthogonal frequency division multiplexing 
650 0 4 |a Orthogonal frequency-division multiplexing 
650 0 4 |a Signal receivers 
650 0 4 |a Signal to noise ratio 
650 0 4 |a Signal to noise ratio 
700 1 0 |a Huang, N.  |e author 
700 1 0 |a Liu, X.  |e author 
700 1 0 |a Zhang, W.  |e author 
700 1 0 |a Zhou, J.  |e author 
773 |t IEEE Transactions on Communications 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/TCOMM.2022.3174102