Fully-Automated Spike Detection and Dipole Analysis of Epileptic MEG Using Deep Learning

Magnetoencephalography (MEG) is a useful tool for clinically evaluating the localization of interictal spikes. Neurophysiologists visually identify spikes from the MEG waveforms and estimate the equivalent current dipoles (ECD). However, presently, these analyses are manually performed by neurophysi...

Full description

Bibliographic Details
Main Authors: Asai, M. (Author), Emura, T. (Author), Hirano, R. (Author), Hirata, M. (Author), Kagitani-Shimono, K. (Author), Kishima, H. (Author), Nakashima, T. (Author), Nakata, O. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03385nam a2200565Ia 4500
001 10.1109-TMI.2022.3173743
008 220630s2022 CNT 000 0 und d
020 |a 02780062 (ISSN) 
245 1 0 |a Fully-Automated Spike Detection and Dipole Analysis of Epileptic MEG Using Deep Learning 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2022 
520 3 |a Magnetoencephalography (MEG) is a useful tool for clinically evaluating the localization of interictal spikes. Neurophysiologists visually identify spikes from the MEG waveforms and estimate the equivalent current dipoles (ECD). However, presently, these analyses are manually performed by neurophysiologists and are time-consuming. Another problem is that spike identification from MEG waveforms largely depends on neurophysiologists’ skills and experiences. These problems cause poor cost-effectiveness in clinical MEG examination. To overcome these problems, we fully automated spike identification and ECD estimation using a deep learning approach fully automated AI-based MEG interictal epileptiform discharge identification and ECD estimation (FAMED). We applied a semantic segmentation method, which is an image processing technique, to identify the appropriate times between spike onset and peak and to select appropriate sensors for ECD estimation. FAMED was trained and evaluated using clinical MEG data acquired from 375 patients. FAMED training was performed in two stages: in the first stage, a classification network was learned, and in the second stage, a segmentation network that extended the classification network was learned. The classification network had a mean AUC of 0.9868 (10-fold patient-wise cross-validation); the sensitivity and specificity were 0.7952 and 0.9971, respectively. The median distance between the ECDs estimated by the neurophysiologists and those using FAMED was 0.63 cm. Thus, the performance of FAMED is comparable to that of neurophysiologists, and it can contribute to the efficiency and consistency of MEG ECD analysis. Author 
650 0 4 |a Automation 
650 0 4 |a Brain mapping 
650 0 4 |a Classification networks 
650 0 4 |a Cost effectiveness 
650 0 4 |a Deep learning 
650 0 4 |a Deep learning 
650 0 4 |a Deep learning 
650 0 4 |a Deep learning 
650 0 4 |a Dipole analysis 
650 0 4 |a Dipole analysis 
650 0 4 |a Epilepsy 
650 0 4 |a Epilepsy 
650 0 4 |a Equivalent current dipole 
650 0 4 |a Estimation 
650 0 4 |a Fully automated 
650 0 4 |a Image segmentation 
650 0 4 |a Images segmentations 
650 0 4 |a Magnetoencephalography 
650 0 4 |a Magnetoencephalography 
650 0 4 |a Magnetoencephalography (MEG) 
650 0 4 |a Neurology 
650 0 4 |a Semantic Segmentation 
650 0 4 |a Semantics 
650 0 4 |a Semantics 
650 0 4 |a Sensors 
650 0 4 |a Spike detection 
650 0 4 |a Spike detection 
650 0 4 |a Training data 
650 0 4 |a Training data 
700 1 0 |a Asai, M.  |e author 
700 1 0 |a Emura, T.  |e author 
700 1 0 |a Hirano, R.  |e author 
700 1 0 |a Hirata, M.  |e author 
700 1 0 |a Kagitani-Shimono, K.  |e author 
700 1 0 |a Kishima, H.  |e author 
700 1 0 |a Nakashima, T.  |e author 
700 1 0 |a Nakata, O.  |e author 
773 |t IEEE Transactions on Medical Imaging 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/TMI.2022.3173743