Sparse Sonomyography-based Estimation of Isometric Force: A Comparison of Methods and Features

Noninvasive methods for estimation of joint and muscle forces have widespread clinical and research applications. Surface electromyography (sEMG) provides a measure of the neural activation of muscles which can be used to estimate the force produced by the muscle. However, sEMG based measures of for...

Full description

Bibliographic Details
Main Authors: Alzamani, M. (Author), Dockum, A. (Author), Kamatham, A.T (Author), Mukherjee, B. (Author), Sikdar, S. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03253nam a2200565Ia 4500
001 10.1109-TMRB.2022.3172680
008 220630s2022 CNT 000 0 und d
020 |a 25763202 (ISSN) 
245 1 0 |a Sparse Sonomyography-based Estimation of Isometric Force: A Comparison of Methods and Features 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2022 
520 3 |a Noninvasive methods for estimation of joint and muscle forces have widespread clinical and research applications. Surface electromyography (sEMG) provides a measure of the neural activation of muscles which can be used to estimate the force produced by the muscle. However, sEMG based measures of force suffer from poor signal-to-noise ratio and limited spatiotemporal specificity. In this paper, we propose a sonomyography or ultrasound imaging-based offline approach for estimating continuous isometric force from a sparse set of ultrasound scanlines. Our approach isolates anatomically relevant features from A-mode scanlines isolated from B-mode images, thus greatly reducing the dimensionality of the feature space and the computational complexity involved in traditional ultrasound-based methods. We evaluate the performance of four regression methodologies for force prediction using the reduced sonomyographic feature set. We also evaluate the feasibility of a practical wearable sonomyography-based system by simulating the effect of transducer placement and varying the number of transducers used in force prediction. Our results demonstrate that Gaussian process regression models outperform other regression methods in predicting continuous force levels from just four equispaced transducers in offline settings. We believe that these findings will aid in the design of wearable, robust and computationally efficient sonomyography-based force prediction systems. IEEE 
650 0 4 |a Activity sensing 
650 0 4 |a A-mode ultrasound 
650 0 4 |a A-mode ultrasounds 
650 0 4 |a Biomedical signal processing 
650 0 4 |a Clinical research 
650 0 4 |a Electromyography 
650 0 4 |a Estimation 
650 0 4 |a Feature extraction 
650 0 4 |a Features extraction 
650 0 4 |a Force 
650 0 4 |a Force 
650 0 4 |a force estimation 
650 0 4 |a Force estimation 
650 0 4 |a Force predictions 
650 0 4 |a Forecasting 
650 0 4 |a Muscle 
650 0 4 |a Muscle activities 
650 0 4 |a muscle activity sensing. 
650 0 4 |a Muscle activity sensing. 
650 0 4 |a Muscles 
650 0 4 |a Noninvasive medical procedures 
650 0 4 |a Regression analysis 
650 0 4 |a Signal to noise ratio 
650 0 4 |a sonomyography 
650 0 4 |a Sonomyography 
650 0 4 |a Transducers 
650 0 4 |a Transducers 
650 0 4 |a Ultrasonic imaging 
650 0 4 |a Ultrasonic variable measurement 
650 0 4 |a Ultrasonic variables measurement 
650 0 4 |a Ultrasonography 
650 0 4 |a Wearable technology 
700 1 0 |a Alzamani, M.  |e author 
700 1 0 |a Dockum, A.  |e author 
700 1 0 |a Kamatham, A.T.  |e author 
700 1 0 |a Mukherjee, B.  |e author 
700 1 0 |a Sikdar, S.  |e author 
773 |t IEEE Transactions on Medical Robotics and Bionics 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/TMRB.2022.3172680