Multiagent Soft Actor-Critic Based Hybrid Motion Planner for Mobile Robots

In this article, a novel hybrid multirobot motion planner that can be applied under no explicit communication and local observable conditions is presented. The planner is model-free and can realize the end-to-end mapping of multirobot state and observation information to final smooth and continuous...

Full description

Bibliographic Details
Main Authors: Dong, L. (Author), He, Z. (Author), Song, C. (Author), Sun, C. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02648nam a2200553Ia 4500
001 10.1109-TNNLS.2022.3172168
008 220630s2022 CNT 000 0 und d
020 |a 2162237X (ISSN) 
245 1 0 |a Multiagent Soft Actor-Critic Based Hybrid Motion Planner for Mobile Robots 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2022 
520 3 |a In this article, a novel hybrid multirobot motion planner that can be applied under no explicit communication and local observable conditions is presented. The planner is model-free and can realize the end-to-end mapping of multirobot state and observation information to final smooth and continuous trajectories. The planner is a front-end and back-end separated architecture. The design of the front-end collaborative waypoints searching module is based on the multiagent soft actor-critic (MASAC) algorithm under the centralized training with decentralized execution (CTDE) diagram. The design of the back-end trajectory optimization module is based on the minimal snap method with safety zone constraints. This module can output the final dynamic-feasible and executable trajectories. Finally, multigroup experimental results verify the effectiveness of the proposed motion planner. IEEE 
650 0 4 |a Aerodynamics 
650 0 4 |a Collaboration 
650 0 4 |a Collaboration 
650 0 4 |a Discrete waypoint searching 
650 0 4 |a Discrete waypoints searching 
650 0 4 |a hybrid motion planner 
650 0 4 |a Hybrid motion planner 
650 0 4 |a Industrial robots 
650 0 4 |a Job analysis 
650 0 4 |a Motion planners 
650 0 4 |a Motion planning 
650 0 4 |a Multi agent systems 
650 0 4 |a Multipurpose robots 
650 0 4 |a multirobot motion planning 
650 0 4 |a Multi-robot motion planning 
650 0 4 |a Multi-robot systems 
650 0 4 |a Planning 
650 0 4 |a Reinforcement learning 
650 0 4 |a Reinforcement learning 
650 0 4 |a reinforcement learning (RL) 
650 0 4 |a Robot programming 
650 0 4 |a Robot sensing system 
650 0 4 |a Robot sensing systems 
650 0 4 |a Robots 
650 0 4 |a Task analysis 
650 0 4 |a Task analysis 
650 0 4 |a Trajectories 
650 0 4 |a Trajectory optimization 
650 0 4 |a Trajectory optimization 
650 0 4 |a trajectory optimization. 
650 0 4 |a Trajectory optimization. 
650 0 4 |a Waypoints 
700 1 0 |a Dong, L.  |e author 
700 1 0 |a He, Z.  |e author 
700 1 0 |a Song, C.  |e author 
700 1 0 |a Sun, C.  |e author 
773 |t IEEE Transactions on Neural Networks and Learning Systems 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/TNNLS.2022.3172168