Code-Aligned Autoencoders for Unsupervised Change Detection in Multimodal Remote Sensing Images

Image translation with convolutional autoencoders has recently been used as an approach to multimodal change detection (CD) in bitemporal satellite images. A main challenge is the alignment of the code spaces by reducing the contribution of change pixels to the learning of the translation function....

Full description

Bibliographic Details
Main Authors: Anfinsen, S.N (Author), Bianchi, F.M (Author), Hansen, M.A (Author), Jenssen, R. (Author), Kampffmeyer, M. (Author), Luppino, L.T (Author), Moser, G. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03198nam a2200637Ia 4500
001 10.1109-TNNLS.2022.3172183
008 220630s2022 CNT 000 0 und d
020 |a 2162237X (ISSN) 
245 1 0 |a Code-Aligned Autoencoders for Unsupervised Change Detection in Multimodal Remote Sensing Images 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2022 
520 3 |a Image translation with convolutional autoencoders has recently been used as an approach to multimodal change detection (CD) in bitemporal satellite images. A main challenge is the alignment of the code spaces by reducing the contribution of change pixels to the learning of the translation function. Many existing approaches train the networks by exploiting supervised information of the change areas, which, however, is not always available. We propose to extract relational pixel information captured by domain-specific affinity matrices at the input and use this to enforce alignment of the code spaces and reduce the impact of change pixels on the learning objective. A change prior is derived in an unsupervised fashion from pixel pair affinities that are comparable across domains. To achieve code space alignment, we enforce pixels with similar affinity relations in the input domains to be correlated also in code space. We demonstrate the utility of this procedure in combination with cycle consistency. The proposed approach is compared with the state-of-the-art machine learning and deep learning algorithms. Experiments conducted on four real and representative datasets show the effectiveness of our methodology. IEEE 
650 0 4 |a Affinity matrix 
650 0 4 |a Affinity matrix 
650 0 4 |a Aligned autoencoder 
650 0 4 |a aligned autoencoders 
650 0 4 |a Alignment 
650 0 4 |a Auto encoders 
650 0 4 |a Code 
650 0 4 |a Codes 
650 0 4 |a Codes (symbols) 
650 0 4 |a Decoding 
650 0 4 |a deep learning 
650 0 4 |a Deep learning 
650 0 4 |a Deep learning 
650 0 4 |a Deep learning 
650 0 4 |a heterogeneous data 
650 0 4 |a Heterogeneous data 
650 0 4 |a image regression 
650 0 4 |a Image regression 
650 0 4 |a Image-analysis 
650 0 4 |a Learning algorithms 
650 0 4 |a Multimodal image analyse 
650 0 4 |a multimodal image analysis 
650 0 4 |a Multimodal images 
650 0 4 |a Pixels 
650 0 4 |a Remote sensing 
650 0 4 |a Remote sensing 
650 0 4 |a Remote-sensing 
650 0 4 |a Space optics 
650 0 4 |a Space-based radar 
650 0 4 |a Synthetic aperture radar 
650 0 4 |a Synthetic aperture radar 
650 0 4 |a Tensors 
650 0 4 |a Training 
650 0 4 |a Unsupervised change detection 
650 0 4 |a unsupervised change detection (CD). 
650 0 4 |a Unsupervised change detection . 
700 1 0 |a Anfinsen, S.N.  |e author 
700 1 0 |a Bianchi, F.M.  |e author 
700 1 0 |a Hansen, M.A.  |e author 
700 1 0 |a Jenssen, R.  |e author 
700 1 0 |a Kampffmeyer, M.  |e author 
700 1 0 |a Luppino, L.T.  |e author 
700 1 0 |a Moser, G.  |e author 
773 |t IEEE Transactions on Neural Networks and Learning Systems 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/TNNLS.2022.3172183