Sparse Representations of Positive Functions via First and Second-Order Pseudo-Mirror Descent

We consider expected risk minimization problems when the range of the estimator is required to be nonnegative, motivated by the settings of maximum likelihood estimation (MLE) and trajectory optimization. To facilitate nonlinear interpolation, we hypothesize that the search space is a Reproducing Ke...

Full description

Bibliographic Details
Main Authors: Chakraborty, A. (Author), Koppel, A. (Author), Rajawat, K. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02979nam a2200457Ia 4500
001 10.1109-TSP.2022.3173146
008 220630s2022 CNT 000 0 und d
020 |a 1053587X (ISSN) 
245 1 0 |a Sparse Representations of Positive Functions via First and Second-Order Pseudo-Mirror Descent 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2022 
520 3 |a We consider expected risk minimization problems when the range of the estimator is required to be nonnegative, motivated by the settings of maximum likelihood estimation (MLE) and trajectory optimization. To facilitate nonlinear interpolation, we hypothesize that the search space is a Reproducing Kernel Hilbert Space (RKHS). We develop first and second-order variants of stochastic mirror descent employing (i) \emph{pseudo-gradients} and (ii) complexity-reducing projections. Compressive projection in the first-order scheme is executed via kernel orthogonal matching pursuit (KOMP), which overcomes the fact that the vanilla RKHS parameterization grows unbounded with the iteration index in the stochastic setting. Moreover, pseudo-gradients are needed when gradient estimates for cost are only computable up to some numerical error, which arise in, e.g., integral approximations. Under constant step-size and compression budget, we establish tradeoffs between the radius of convergence of the expected sub-optimality and the projection budget parameter, as well as non-asymptotic bounds on the model complexity. To refine the solution's precision, we develop a second-order extension which employs recursively averaged pseudo-gradient outer-products to approximate the Hessian inverse, whose convergence in mean is established under an additional eigenvalue decay condition on the Hessian of the optimal RKHS element, which is unique to this work. Experiments demonstrate favorable performance on inhomogeneous Poisson Process intensity estimation in practice. IEEE 
650 0 4 |a Budget control 
650 0 4 |a Complexity theory 
650 0 4 |a Complexity theory 
650 0 4 |a Convergence 
650 0 4 |a Convergence 
650 0 4 |a Eigenvalues and eigenfunctions 
650 0 4 |a First order 
650 0 4 |a Kernel 
650 0 4 |a Kernel 
650 0 4 |a Maximum likelihood estimation 
650 0 4 |a Mirrors 
650 0 4 |a Mirrors 
650 0 4 |a Pseudo gradients 
650 0 4 |a Random processes 
650 0 4 |a Reproducing Kernel Hilbert spaces 
650 0 4 |a Risk management 
650 0 4 |a Risk management 
650 0 4 |a Risk perception 
650 0 4 |a Risks management 
650 0 4 |a Second orders 
650 0 4 |a Sparse representation 
650 0 4 |a Stochastic processes 
650 0 4 |a Stochastic systems 
650 0 4 |a Training 
650 0 4 |a Via-first 
700 1 0 |a Chakraborty, A.  |e author 
700 1 0 |a Koppel, A.  |e author 
700 1 0 |a Rajawat, K.  |e author 
773 |t IEEE Transactions on Signal Processing 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/TSP.2022.3173146