A Semi-Blind Method for Localization of Underwater Acoustic Sources

Underwater acoustic localization has traditionally been challenging due to the presence of unknown environmental structure and dynamic conditions. The problem is richer still when such structure includes occlusion, which causes the loss of line-of-sight (LOS) between the acoustic source and the rece...

Full description

Bibliographic Details
Main Authors: Arikan, T. (Author), Deane, G. (Author), Singer, A. (Author), Vishnu, H. (Author), Weiss, A. (Author), Wornell, G. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03064nam a2200565Ia 4500
001 10.1109-TSP.2022.3173731
008 220630s2022 CNT 000 0 und d
020 |a 1053587X (ISSN) 
245 1 0 |a A Semi-Blind Method for Localization of Underwater Acoustic Sources 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2022 
520 3 |a Underwater acoustic localization has traditionally been challenging due to the presence of unknown environmental structure and dynamic conditions. The problem is richer still when such structure includes occlusion, which causes the loss of line-of-sight (LOS) between the acoustic source and the receivers, on which many of the existing localization algorithms rely. We develop a semi-blind passive localization method capable of accurately estimating the source's position even in the possible absence of LOS between the source and all receivers. Based on typically-available prior knowledge of the water surface and bottom, we derive a closed-form expression for the optimal estimator under a multi-ray propagation model, which is suitable for shallow-water environments and high-frequency signals. By exploiting a computationally efficient form of this estimator, our methodology makes comparatively high-resolution localization feasible. We also derive the Cramr-Rao bound for this model, which can be used to guide the placement of collections of receivers so as to optimize localization accuracy. The method improves a balance of accuracy and robustness to environmental model mismatch, relative to existing localization methods that are useful in similar settings. The method is validated with simulations and water tank experiments. IEEE 
650 0 4 |a Cholesky decomposition 
650 0 4 |a Cholesky decomposition 
650 0 4 |a Computational modeling 
650 0 4 |a Computational modelling 
650 0 4 |a Cram\'er-rao bound 
650 0 4 |a Cram\'er-Rao bound 
650 0 4 |a Frequency estimation 
650 0 4 |a Localisation 
650 0 4 |a Localization 
650 0 4 |a Location awareness 
650 0 4 |a Location awareness 
650 0 4 |a Ma ximum likelihoods 
650 0 4 |a matched field processing 
650 0 4 |a Matched field processing 
650 0 4 |a maximum likelihood 
650 0 4 |a Maximum likelihood 
650 0 4 |a Maximum-likelihood 
650 0 4 |a Nonline of sight 
650 0 4 |a non-line-of-sight 
650 0 4 |a Receiver 
650 0 4 |a Receivers 
650 0 4 |a Sea surface 
650 0 4 |a Sea surfaces 
650 0 4 |a Sensor arrays 
650 0 4 |a Sensors 
650 0 4 |a Sensors array 
650 0 4 |a Surface waters 
650 0 4 |a Underwater acoustic 
650 0 4 |a underwater acoustics 
650 0 4 |a Underwater acoustics 
650 0 4 |a Water tanks 
700 1 0 |a Arikan, T.  |e author 
700 1 0 |a Deane, G.  |e author 
700 1 0 |a Singer, A.  |e author 
700 1 0 |a Vishnu, H.  |e author 
700 1 0 |a Weiss, A.  |e author 
700 1 0 |a Wornell, G.  |e author 
773 |t IEEE Transactions on Signal Processing 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/TSP.2022.3173731