Logit Mixed Logit Under Asymmetry and Multimodality of WTP: A Monte Carlo Evaluation

The logit-mixed logit (LML) model advances choice modeling by generalizing previous parametric and semi-nonparametric specifications and allowing retrieval of flexible taste distributions. Using standard operating conditions in the field, we report results from Monte Carlo experiments designed to as...

Full description

Bibliographic Details
Main Authors: Franceschinis, C. (Author), Scarpa, R. (Author), Thiene, M. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02217nam a2200349Ia 4500
001 10.1111-ajae.12122
008 220427s2021 CNT 000 0 und d
020 |a 00029092 (ISSN) 
245 1 0 |a Logit Mixed Logit Under Asymmetry and Multimodality of WTP: A Monte Carlo Evaluation 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1111/ajae.12122 
520 3 |a The logit-mixed logit (LML) model advances choice modeling by generalizing previous parametric and semi-nonparametric specifications and allowing retrieval of flexible taste distributions. Using standard operating conditions in the field, we report results from Monte Carlo experiments designed to assess the finite sample bias-variance tradeoff for the LML using as a benchmark conventional Mixed logit models (MXL) under asymmetric and multimodal taste distributions. The LML specification always outperforms the MXL in terms of bias, but when the variance around modes is high the mean squared error (MSE) is lower than that of MXL only at sample sizes larger than usual and with some nuances. D-error minimizing experimental design predicated on multinomial logit significantly reduces MSE, but no clear winner is found between polynomial, step, and spline functions for the multidimensional grid function. Analysis of empirical data from a choice experiment on tap water shows that multimodality emerges only if higher number of node parameters are used in the LML. © 2020 Agricultural and Applied Economics Association 
650 0 4 |a benchmarking 
650 0 4 |a Choice modeling 
650 0 4 |a computer simulation 
650 0 4 |a economic analysis 
650 0 4 |a error analysis 
650 0 4 |a experimental design 
650 0 4 |a logit mixed logit 
650 0 4 |a model test 
650 0 4 |a Monte Carlo analysis 
650 0 4 |a numerical model 
650 0 4 |a random utility 
650 0 4 |a semiparametric choice models 
650 0 4 |a trade-off 
650 0 4 |a utility in WTP-space 
650 0 4 |a variance analysis 
650 0 4 |a willingness to pay 
700 1 |a Franceschinis, C.  |e author 
700 1 |a Scarpa, R.  |e author 
700 1 |a Thiene, M.  |e author 
773 |t American Journal of Agricultural Economics