Improved production of bacterial cellulose through investigation of effects of inhibitory compounds from lignocellulosic hydrolysates

Although the unique nanostructure of bacterial cellulose (BC) imparts superior mechanochemical properties and thus allows for diverse applications, the high production cost of BC necessitates the development of more cost-effective solutions, for example, those using lignocellulosic biomass as a subs...

Full description

Bibliographic Details
Main Authors: Jang, M. (Author), Kim, H. (Author), Lee, J. (Author), Lee, T. (Author), Oh, J.-M (Author), Park, C. (Author), Son, J. (Author), Yoo, H.Y (Author)
Format: Article
Language:English
Published: Blackwell Publishing Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03551nam a2200721Ia 4500
001 10.1111-gcbb.12800
008 220427s2021 CNT 000 0 und d
020 |a 17571693 (ISSN) 
245 1 0 |a Improved production of bacterial cellulose through investigation of effects of inhibitory compounds from lignocellulosic hydrolysates 
260 0 |b Blackwell Publishing Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1111/gcbb.12800 
520 3 |a Although the unique nanostructure of bacterial cellulose (BC) imparts superior mechanochemical properties and thus allows for diverse applications, the high production cost of BC necessitates the development of more cost-effective solutions, for example, those using lignocellulosic biomass as a substrate and relying on its pretreatment and saccharification to generate fermentable sugars. However, the various species (e.g., aliphatic acids, furans, and phenolics) produced during pretreatment may interfere with bacterial cell growth and BC production. Herein, we investigated the effects of aliphatic (acetic and formic) acids, furans (5-hydroxymethylfurfural [5-HMF] and furfural), and phenolics (syringaldehyde and p-coumaric acid) on the production of BC. This production was enhanced at low aliphatic acid concentrations (1 g/L acetic acid and 0.5 g/L formic acid) but was suppressed by at least 90% in cases of 0.75 g/L formic acid, 0.4 g/L furfural, 4 g/L 5-HMF, 2.5 g/L syringaldehyde, and 2.5 g/L p-coumaric acid. BC production efficiencies of 97.86%, 76.66%, and 73.50% were observed for Miscanthus, barley straw, and pine tree hydrolysates, respectively, under optimal conditions. Therefore, these results provided the possibility to utilize the most abundant and sustainable lignocellulose on the planet for BC production. © 2020 The Authors. GCB Bioenergy Published by John Wiley & Sons Ltd 
650 0 4 |a 5 hydroxymethyl furfurals 
650 0 4 |a Aldehydes 
650 0 4 |a Aldehydes 
650 0 4 |a Aliphatic compounds 
650 0 4 |a Aliphatic Compounds 
650 0 4 |a Aromatic compounds 
650 0 4 |a Aromatic Compounds 
650 0 4 |a Bacteria (microorganisms) 
650 0 4 |a bacterial cellulose 
650 0 4 |a Bacterial cellulose 
650 0 4 |a Cell proliferation 
650 0 4 |a cellulose 
650 0 4 |a Cellulose 
650 0 4 |a Cellulose 
650 0 4 |a Cost effectiveness 
650 0 4 |a Cost Effectiveness 
650 0 4 |a Cost-effective solutions 
650 0 4 |a Diverse applications 
650 0 4 |a experimental study 
650 0 4 |a Formic acid 
650 0 4 |a Formic Acid 
650 0 4 |a Furfural 
650 0 4 |a Gluconacetobacter xylinus 
650 0 4 |a Gluconacetobacter xylinus 
650 0 4 |a Hordeum 
650 0 4 |a hydrolysis 
650 0 4 |a inhibitor 
650 0 4 |a Inhibitory compounds 
650 0 4 |a inhibitory effect 
650 0 4 |a lignocellulosic biomass 
650 0 4 |a lignocellulosic hydrolysate 
650 0 4 |a Lignocellulosic hydrolysates 
650 0 4 |a Miscanthus 
650 0 4 |a nanoparticle 
650 0 4 |a Optimal conditions 
650 0 4 |a Organic pollutants 
650 0 4 |a physiological response 
650 0 4 |a Pinus (genus) 
650 0 4 |a pretreatment 
650 0 4 |a Production efficiency 
650 0 4 |a Saccharification 
650 0 4 |a Substrates 
700 1 |a Jang, M.  |e author 
700 1 |a Kim, H.  |e author 
700 1 |a Lee, J.  |e author 
700 1 |a Lee, T.  |e author 
700 1 |a Oh, J.-M.  |e author 
700 1 |a Park, C.  |e author 
700 1 |a Son, J.  |e author 
700 1 |a Yoo, H.Y.  |e author 
773 |t GCB Bioenergy