Improving lignocellulosic biofuel production by CRISPR/Cas9-mediated lignin modification in barley

Barley is a major cereal crop with a wide ecological range, and its lignocellulosic residues have the potential to be used as a feedstock for various purposes, including biofuel production. Lignocellulosic biomass is an abundant renewable source of carbon energy. However, its heterogeneous propertie...

Full description

Bibliographic Details
Main Authors: Hoang Nguyen Tran, P. (Author), Jung, J.H (Author), Kim, H.-Y (Author), Lee, J.H (Author), Lee, S.-M (Author), Won, H.J (Author)
Format: Article
Language:English
Published: Blackwell Publishing Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03487nam a2200649Ia 4500
001 10.1111-gcbb.12808
008 220427s2021 CNT 000 0 und d
020 |a 17571693 (ISSN) 
245 1 0 |a Improving lignocellulosic biofuel production by CRISPR/Cas9-mediated lignin modification in barley 
260 0 |b Blackwell Publishing Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1111/gcbb.12808 
520 3 |a Barley is a major cereal crop with a wide ecological range, and its lignocellulosic residues have the potential to be used as a feedstock for various purposes, including biofuel production. Lignocellulosic biomass is an abundant renewable source of carbon energy. However, its heterogeneous properties and intrinsic recalcitrance caused by cell wall lignification have lowered the biorefinery efficiency. The reduced lignin content and/or altered lignin structure have been desirable traits for lignocellulosic feedstock. We report the reduction of lignin content in barley by CRISPR/Cas9-mediated mutagenesis of caffeic acid O-methyltransferase 1 (HvCOMT1), the lignin biosynthetic gene responsible for lignin syringyl unit formation. The transgene-free, homozygous HvCOMT1 mutant was generated and analyzed for its cell wall composition, saccharification efficiency, and bioethanol production performance. The mutant had 14% lower total lignin content and 34% higher fermentable glucose recovery rate, compared to the wild-type (WT). The bioethanol concentration and yield from the hydrolysates of the mutant biomass were 14.3 g/L and 0.46 g/g total sugar, respectively. This result was 34% and 12% higher than those obtained from WT (10.7 g/L and 0.41 g/g total sugar). Under controlled environmental conditions, the overall growth performance of the HvCOMT1 mutant was similar to WT, with no distinct morphological variations between them. The HvCOMT1 mutant barley could offer improved quality lignocellulosic feedstock for efficient lignocellulosic biofuel production. © 2021 The Authors. GCB Bioenergy Published by John Wiley & Sons Ltd 
650 0 4 |a antioxidant 
650 0 4 |a barley 
650 0 4 |a barley 
650 0 4 |a Barley 
650 0 4 |a Bioethanol 
650 0 4 |a Bio-ethanol production 
650 0 4 |a biofuel 
650 0 4 |a biomass 
650 0 4 |a Biomass 
650 0 4 |a Biomass 
650 0 4 |a caffeic acid O-methyltransferase 
650 0 4 |a Caffeic acid o-methyltransferase 
650 0 4 |a Cell wall composition 
650 0 4 |a cellulose 
650 0 4 |a Cellulosic ethanol 
650 0 4 |a CRISPR/Cas9 
650 0 4 |a Ecology 
650 0 4 |a Ecology 
650 0 4 |a Environmental conditions 
650 0 4 |a Ethanol 
650 0 4 |a Ethanol 
650 0 4 |a Feedstocks 
650 0 4 |a Hordeum 
650 0 4 |a lignin 
650 0 4 |a Lignin 
650 0 4 |a Lignin Content 
650 0 4 |a lignin modification 
650 0 4 |a Lignin modifications 
650 0 4 |a lignocellulosic biofuel 
650 0 4 |a lignocellulosic biomass 
650 0 4 |a Lignocellulosic biomass 
650 0 4 |a Lignocellulosic feedstocks 
650 0 4 |a Lignocellulosic residues 
650 0 4 |a Morphological variation 
650 0 4 |a polysaccharide 
650 0 4 |a Production 
650 0 4 |a Saccharification 
650 0 4 |a Saccharification 
700 1 |a Hoang Nguyen Tran, P.  |e author 
700 1 |a Jung, J.H.  |e author 
700 1 |a Kim, H.-Y.  |e author 
700 1 |a Lee, J.H.  |e author 
700 1 |a Lee, S.-M.  |e author 
700 1 |a Won, H.J.  |e author 
773 |t GCB Bioenergy