Cropland-to-Miscanthus conversion alters soil bacterial and archaeal communities influencing N-cycle in Northern China

Miscanthus spp. are increasingly cultivated in cropland worldwide due to their bioenergy potential and multiple ecological services. Effects of long-term cropland-to-Miscanthus conversion without N fertilizer on soil microbiome and N cycling largely remain unknown. We aimed to explore the effects of...

Full description

Bibliographic Details
Main Authors: Fan, R. (Author), Fan, X. (Author), Guo, Q. (Author), Hou, X. (Author), Hou, Y. (Author), Li, C. (Author), Li, X. (Author), Shi, R. (Author), Song, J. (Author), Wang, C. (Author), Wu, J. (Author), Yue, Y. (Author), Zhang, W. (Author), Zhao, C. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
RNA
Online Access:View Fulltext in Publisher
LEADER 04268nam a2200745Ia 4500
001 10.1111-gcbb.12874
008 220427s2021 CNT 000 0 und d
020 |a 17571693 (ISSN) 
245 1 0 |a Cropland-to-Miscanthus conversion alters soil bacterial and archaeal communities influencing N-cycle in Northern China 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1111/gcbb.12874 
520 3 |a Miscanthus spp. are increasingly cultivated in cropland worldwide due to their bioenergy potential and multiple ecological services. Effects of long-term cropland-to-Miscanthus conversion without N fertilizer on soil microbiome and N cycling largely remain unknown. We aimed to explore the effects of Miscanthus conversion on soil microbiome and N cycling over a 15-year period. We analyzed diversity, composition, and abundance of bacterial and archaeal communities using 16S rRNA amplicon sequencing, and abundances of N-cycling-related genes using quantitative polymerase chain reaction of 0–10 cm soils collected from bare land, cropland, 10-year Miscanthus × giganteus, and 15-year Miscanthus sacchriflorus land in Beijing. Conversion decreased soil sand and micro-aggregate proportion, nitrate N (NiN), available phosphorus levels, conductivity, temperature, and pH, while increasing proportion of soil clay and macro-aggregate (MAA), soil organic C (SOC), available N (AN), exchangeable Mg2+ (EMg2+), and available potassium (AK) contents as well as microbial C/N. Consequently, diversity, composition, and abundance of soil bacterial community exhibited larger changes than those values of archaeal community after conversion. Soil AP, EMg2+, AK, and SOC were key factors in shifting microbiome from the cropland to Miscanthus pattern. Moreover, abundances of bacterial and archaeal communities and the N fixer gene nifH increased, whereas that of the bacterial ammonia monooxygenase gene decreased. The copies of other N-cycling-related genes in the two Miscanthus lands seemed similar to those values of cropland. The nifH copies negatively correlated with soil NiN and positively correlated with AN, EMg2+, ECa2+, SOC, AK, and MAA. We conclude that changes in soil microbiome pattern induced by the variation of soil properties enhance microbial N fixation potential, maintaining stable N levels and robust N cycling with lower N leakage risk after conversion. These results should inspire farmers and governments to large-scale use Miscanthus on marginal cropland in Northern China. © 2021 The Authors. GCB Bioenergy published by John Wiley & Sons Ltd. 
650 0 4 |a 16S rRNA sequencing 
650 0 4 |a abundance 
650 0 4 |a Aggregates 
650 0 4 |a agricultural land 
650 0 4 |a Ammonia 
650 0 4 |a Ammonia monooxygenase 
650 0 4 |a Archaea 
650 0 4 |a Available phosphorus 
650 0 4 |a Available potassiums 
650 0 4 |a Bacteria (microorganisms) 
650 0 4 |a bacterium 
650 0 4 |a Beijing [China] 
650 0 4 |a Bioenergy potential 
650 0 4 |a China 
650 0 4 |a community dynamics 
650 0 4 |a cropland 
650 0 4 |a Ecological services 
650 0 4 |a ecosystem service 
650 0 4 |a functional genes 
650 0 4 |a gene 
650 0 4 |a Genes 
650 0 4 |a Magnesium compounds 
650 0 4 |a Microaggregates 
650 0 4 |a Miscanthus 
650 0 4 |a Miscanthus 
650 0 4 |a N cycling 
650 0 4 |a Nickel compounds 
650 0 4 |a nitrogen cycle 
650 0 4 |a polymerase chain reaction 
650 0 4 |a Polymerase chain reaction 
650 0 4 |a Quantitative polymerase chain reaction 
650 0 4 |a RNA 
650 0 4 |a RNA 
650 0 4 |a Soil bacterial community 
650 0 4 |a soil microbiome 
650 0 4 |a soil microorganism 
650 0 4 |a soil property 
650 0 4 |a Soils 
700 1 |a Fan, R.  |e author 
700 1 |a Fan, X.  |e author 
700 1 |a Guo, Q.  |e author 
700 1 |a Hou, X.  |e author 
700 1 |a Hou, Y.  |e author 
700 1 |a Li, C.  |e author 
700 1 |a Li, X.  |e author 
700 1 |a Shi, R.  |e author 
700 1 |a Song, J.  |e author 
700 1 |a Wang, C.  |e author 
700 1 |a Wu, J.  |e author 
700 1 |a Yue, Y.  |e author 
700 1 |a Zhang, W.  |e author 
700 1 |a Zhao, C.  |e author 
773 |t GCB Bioenergy