Aberration correction in stimulated emission depletion microscopy to increase imaging depth in living brain tissue

Significance: Stimulated emission depletion (STED) microscopy enables nanoscale imaging of live samples, but it requires a specific spatial beam shaping that is highly sensitive to optical aberrations, limiting its depth penetration. Therefore, there is a need for methods to reduce optical aberratio...

Full description

Bibliographic Details
Main Authors: Bancelin, S. (Author), Mercier, L. (Author), Murana, E. (Author), Valentin Nägerl, U. (Author)
Format: Article
Language:English
Published: SPIE 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03711nam a2200661Ia 4500
001 10.1117-1.NPh.8.3.035001
008 220427s2021 CNT 000 0 und d
020 |a 2329423X (ISSN) 
245 1 0 |a Aberration correction in stimulated emission depletion microscopy to increase imaging depth in living brain tissue 
260 0 |b SPIE  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1117/1.NPh.8.3.035001 
520 3 |a Significance: Stimulated emission depletion (STED) microscopy enables nanoscale imaging of live samples, but it requires a specific spatial beam shaping that is highly sensitive to optical aberrations, limiting its depth penetration. Therefore, there is a need for methods to reduce optical aberrations and improve the spatial resolution of STED microscopy inside thick biological tissue. Aim: The aim of our work was to develop and validate a method based on adaptive optics to achieve an a priori correction of spherical aberrations as a function of imaging depth. Approach: We first measured the aberrations in a phantom sample of gold and fluorescent nanoparticles suspended in an agarose gel with a refractive index closely matching living brain tissue. We then used a spatial light modulator to apply corrective phase shifts and validate this calibration approach by imaging neurons in living brain slices. Results: After quantifying the spatial resolution in depth in phantom samples, we demonstrated that the corrections can substantially increase image quality in living brain slices. Specifically, we could measure structures as small as 80 nm at a depth of 90 μm inside the biological tissue and obtain a 60% signal increase after correction. Conclusion: We propose a simple and robust approach to calibrate and compensate the distortions of the STED beam profile introduced by spherical aberrations with increasing imaging depth and demonstrated that this method offers significant improvements in microscopy performance for nanoscale cellular imaging in live tissue. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. 
650 0 4 |a aberration correction 
650 0 4 |a Aberration correction 
650 0 4 |a Aberrations 
650 0 4 |a Adaptive optics 
650 0 4 |a agarose 
650 0 4 |a animal tissue 
650 0 4 |a Article 
650 0 4 |a astigmatism 
650 0 4 |a Biological tissues 
650 0 4 |a Brain 
650 0 4 |a brain slice 
650 0 4 |a brain slice imaging 
650 0 4 |a Brain slice imaging 
650 0 4 |a Brain slices 
650 0 4 |a brain tissue 
650 0 4 |a Brain tissue 
650 0 4 |a coma 
650 0 4 |a fluorescence imaging 
650 0 4 |a gold 
650 0 4 |a gold nanoparticle 
650 0 4 |a image analysis 
650 0 4 |a image processing 
650 0 4 |a image quality 
650 0 4 |a Image resolution 
650 0 4 |a Imaging depth 
650 0 4 |a Light modulators 
650 0 4 |a microscopy 
650 0 4 |a mouse 
650 0 4 |a Nanotechnology 
650 0 4 |a nerve cell 
650 0 4 |a nonhuman 
650 0 4 |a Phantoms 
650 0 4 |a refraction index 
650 0 4 |a Refractive index 
650 0 4 |a Slice imaging 
650 0 4 |a Spatial resolution 
650 0 4 |a Spherical aberrations 
650 0 4 |a stimulated emission depletion microscopy 
650 0 4 |a stimulated emission depletion microscopy 
650 0 4 |a Stimulated emission depletion microscopy 
650 0 4 |a Tissue 
700 1 |a Bancelin, S.  |e author 
700 1 |a Mercier, L.  |e author 
700 1 |a Murana, E.  |e author 
700 1 |a Valentin Nägerl, U.  |e author 
773 |t Neurophotonics