Multiscale multiphysics data-informed modeling for three-dimensional ocean acoustic simulation and prediction

Three-dimensional (3D) underwater sound field computations have been used for a few decades to understand sound propagation effects above sloped seabeds and in areas with strong 3D temperature and salinity variations. For an approximate simulation of effects in nature, the necessary 3D sound-speed f...

Full description

Bibliographic Details
Main Authors: Duda, T.F (Author), Helfrich, K.R (Author), Lermusiaux, P.F.J (Author), Lin, Y.-T (Author), Lynch, J.F (Author), Newhall, A.E (Author), Wilkin, J. (Author), Zhang, W.G (Author)
Format: Article
Language:English
Published: Acoustical Society of America 2019
Subjects:
sea
Online Access:View Fulltext in Publisher
LEADER 02823nam a2200457Ia 4500
001 10.1121-1.5126012
008 220511s2019 CNT 000 0 und d
020 |a 00014966 (ISSN) 
245 1 0 |a Multiscale multiphysics data-informed modeling for three-dimensional ocean acoustic simulation and prediction 
260 0 |b Acoustical Society of America  |c 2019 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1121/1.5126012 
520 3 |a Three-dimensional (3D) underwater sound field computations have been used for a few decades to understand sound propagation effects above sloped seabeds and in areas with strong 3D temperature and salinity variations. For an approximate simulation of effects in nature, the necessary 3D sound-speed field can be made from snapshots of temperature and salinity from an operational data-driven regional ocean model. However, these models invariably have resolution constraints and physics approximations that exclude features that can have strong effects on acoustics, example features being strong submesoscale fronts and nonhydrostatic nonlinear internal waves (NNIWs). Here, work to predict NNIW fields to improve 3D acoustic forecasts using an NNIW model nested in a tide-inclusive data-assimilating regional model is reported. The work was initiated under the Integrated Ocean Dynamics and Acoustics project. The project investigated ocean dynamical processes that affect important details of sound-propagation, with a focus on those with strong intermittency (high kurtosis) that are challenging to predict deterministically. Strong internal tides and NNIW are two such phenomena, with the former being precursors to NNIW, often feeding energy to them. Successful aspects of the modeling are reported along with weaknesses and unresolved issues identified in the course of the work. © 2019 Acoustical Society of America. 
650 0 4 |a Acoustic fields 
650 0 4 |a Acoustic wave propagation 
650 0 4 |a acoustics 
650 0 4 |a Approximate simulation 
650 0 4 |a article 
650 0 4 |a Dynamical process 
650 0 4 |a feeding 
650 0 4 |a Forecasting 
650 0 4 |a Nonlinear internal wave 
650 0 4 |a prediction 
650 0 4 |a Regional ocean modeling 
650 0 4 |a Salinity variations 
650 0 4 |a sea 
650 0 4 |a simulation 
650 0 4 |a sound 
650 0 4 |a Sound propagation 
650 0 4 |a Threedimensional (3-d) 
650 0 4 |a Tides 
650 0 4 |a Underwater acoustics 
650 0 4 |a Underwater sound 
700 1 |a Duda, T.F.  |e author 
700 1 |a Helfrich, K.R.  |e author 
700 1 |a Lermusiaux, P.F.J.  |e author 
700 1 |a Lin, Y.-T.  |e author 
700 1 |a Lynch, J.F.  |e author 
700 1 |a Newhall, A.E.  |e author 
700 1 |a Wilkin, J.  |e author 
700 1 |a Zhang, W.G.  |e author 
773 |t Journal of the Acoustical Society of America