Refining algorithmic estimation of relative fundamental frequency: Accounting for sample characteristics and fundamental frequency estimation method

Relative fundamental frequency (RFF) is a promising acoustic measure for evaluating voice disorders. Yet, the accuracy of the current RFF algorithm varies across a broad range of vocal signals. The authors investigated how fundamental frequency (fo) estimation and sample characteristics impact the r...

Full description

Bibliographic Details
Main Authors: Buckley, D.P (Author), Kolin, K.R (Author), Noordzij, J.P (Author), Segina, R.K (Author), Stepp, C.E (Author), Tardif, M.C (Author), Vojtech, J.M (Author)
Format: Article
Language:English
Published: Acoustical Society of America 2019
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03127nam a2200553Ia 4500
001 10.1121-1.5131025
008 220511s2019 CNT 000 0 und d
020 |a 00014966 (ISSN) 
245 1 0 |a Refining algorithmic estimation of relative fundamental frequency: Accounting for sample characteristics and fundamental frequency estimation method 
260 0 |b Acoustical Society of America  |c 2019 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1121/1.5131025 
520 3 |a Relative fundamental frequency (RFF) is a promising acoustic measure for evaluating voice disorders. Yet, the accuracy of the current RFF algorithm varies across a broad range of vocal signals. The authors investigated how fundamental frequency (fo) estimation and sample characteristics impact the relationship between manual and semi-automated RFF estimates. Acoustic recordings were collected from 227 individuals with and 256 individuals without voice disorders. Common fo estimation techniques were compared to the autocorrelation method currently implemented in the RFF algorithm. Pitch strength-based categories were constructed using a training set (1158 samples), and algorithm thresholds were tuned to each category. RFF was then computed on an independent test set (291 samples) using category-specific thresholds and compared against manual RFF via mean bias error (MBE) and root-mean-square error (RMSE). Auditory-SWIPE′ for fo estimation led to the greatest correspondence with manual RFF and was implemented in concert with category-specific thresholds. Refining fo estimation and accounting for sample characteristics led to increased correspondence with manual RFF [MBE = 0.01 semitones (ST), RMSE = 0.28 ST] compared to the unmodified algorithm (MBE = 0.90 ST, RMSE = 0.34 ST), reducing the MBE and RMSE of semi-automated RFF estimates by 88.4% and 17.3%, respectively. © 2019 Acoustical Society of America. 
650 0 4 |a acoustics 
650 0 4 |a Acoustics 
650 0 4 |a algorithm 
650 0 4 |a Algorithm threshold 
650 0 4 |a Algorithms 
650 0 4 |a Autocorrelation methods 
650 0 4 |a Automation 
650 0 4 |a Category specifics 
650 0 4 |a Estimation techniques 
650 0 4 |a Frequency estimation 
650 0 4 |a Fundamental frequencies 
650 0 4 |a Fundamental frequency estimation 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a Mean bias errors 
650 0 4 |a Mean square error 
650 0 4 |a Natural frequencies 
650 0 4 |a pathophysiology 
650 0 4 |a phonation 
650 0 4 |a Phonation 
650 0 4 |a procedures 
650 0 4 |a Refining 
650 0 4 |a Root mean square errors 
650 0 4 |a speech analysis 
650 0 4 |a Speech Production Measurement 
650 0 4 |a voice 
650 0 4 |a voice disorder 
650 0 4 |a Voice Disorders 
650 0 4 |a Voice Quality 
700 1 |a Buckley, D.P.  |e author 
700 1 |a Kolin, K.R.  |e author 
700 1 |a Noordzij, J.P.  |e author 
700 1 |a Segina, R.K.  |e author 
700 1 |a Stepp, C.E.  |e author 
700 1 |a Tardif, M.C.  |e author 
700 1 |a Vojtech, J.M.  |e author 
773 |t Journal of the Acoustical Society of America