Some Polynomial Maps with Jacobian Rank Two or Three

We classify all polynomial maps of the form H= (u (x, y,z), v (x, y,z), h (x, y,z)) in the case when the Jacobian matrix of H is nilpotent and the highest degree of z in v is no more than 1. In addition, we generalize the structure of polynomial maps H to H= (H1 (x1, x2, ⋯, xn), b3 x3 +⋯+ bn xn + H2...

Full description

Bibliographic Details
Main Author: Yan, D. (Author)
Format: Article
Language:English
Published: World Scientific 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 00962nam a2200169Ia 4500
001 10.1142-S1005386722000268
008 220706s2022 CNT 000 0 und d
020 |a 10053867 (ISSN) 
245 1 0 |a Some Polynomial Maps with Jacobian Rank Two or Three 
260 0 |b World Scientific  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1142/S1005386722000268 
520 3 |a We classify all polynomial maps of the form H= (u (x, y,z), v (x, y,z), h (x, y,z)) in the case when the Jacobian matrix of H is nilpotent and the highest degree of z in v is no more than 1. In addition, we generalize the structure of polynomial maps H to H= (H1 (x1, x2, ⋯, xn), b3 x3 +⋯+ bn xn + H2 (0) (x2), H3 (x1, x2), ., Hn (x1, x2)). © 2022 Academy of Mathematics and Systems Science, Chinese Academy of Sciences. 
650 0 4 |a Jacobian conjecture 
650 0 4 |a nilpotent Jacobian matrix 
650 0 4 |a polynomial maps 
700 1 |a Yan, D.  |e author 
773 |t Algebra Colloquium