Influences of Hydrogen-Natural Gas Mixtures on the Performance of an Internal Reforming Solid Oxide Fuel Cell Unit: A Simulation Study

Blending hydrogen into natural gas grid can effectively reduce carbon emissions and promote the development of the hydrogen economy. Utilizing hydrogen-natural gas mixtures through internal reforming solid oxide fuel cells (SOFCs) can convert the chemical energy of the fuels direct into electricity,...

Full description

Bibliographic Details
Main Authors: Cai, N. (Author), Cao, H. (Author), Fan, J. (Author), Shi, J. (Author), Shi, Y. (Author), Wang, Y. (Author)
Format: Article
Language:English
Published: IOP Publishing Ltd 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02724nam a2200433Ia 4500
001 10.1149-1945-7111-ac6327
008 220510s2022 CNT 000 0 und d
020 |a 00134651 (ISSN) 
245 1 0 |a Influences of Hydrogen-Natural Gas Mixtures on the Performance of an Internal Reforming Solid Oxide Fuel Cell Unit: A Simulation Study 
260 0 |b IOP Publishing Ltd  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1149/1945-7111/ac6327 
520 3 |a Blending hydrogen into natural gas grid can effectively reduce carbon emissions and promote the development of the hydrogen economy. Utilizing hydrogen-natural gas mixtures through internal reforming solid oxide fuel cells (SOFCs) can convert the chemical energy of the fuels direct into electricity, which is a promising technology for combined heat and power systems. In this study, a three-dimensional model for an internal reforming solid oxide fuel cell unit is developed coupling chemical and electrochemical reactions, mass, momentum and heat transfer processes. The model is validated by both the patterned anode experiments and the button cell experiments with porous electrodes. The distributions of temperature, gas compositions, and current density between pure methane and 30% hydrogen addition are simulated and compared. The influences of the hydrogen addition on the performance of the SOFC unit are further studied by changing the hydrogen blending ratio. The simulation results show that the addition of hydrogen affects the coupling of the endothermic reforming reactions and exothermic electrochemical reactions, which leads to improved temperature uniformity and higher current density of the SOFC unit compared with pure methane feeding. © 2022 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited. [DOI: 10.1149/1945-7111/ac6327]. 
650 0 4 |a Blending 
650 0 4 |a Carbon emissions 
650 0 4 |a Electrochemical reactions 
650 0 4 |a Electrodes 
650 0 4 |a Gas emissions 
650 0 4 |a Gas mixtures 
650 0 4 |a Heat transfer 
650 0 4 |a Hydrogen 
650 0 4 |a Hydrogen addition 
650 0 4 |a Hydrogen economy 
650 0 4 |a Hydrogen fuels 
650 0 4 |a Internal reforming 
650 0 4 |a Methane 
650 0 4 |a Natural gas 
650 0 4 |a Natural gas grids 
650 0 4 |a Natural gas mixture 
650 0 4 |a Performance 
650 0 4 |a Simulation studies 
650 0 4 |a Solid oxide fuel cells (SOFC) 
650 0 4 |a Solid-oxide fuel cell 
700 1 |a Cai, N.  |e author 
700 1 |a Cao, H.  |e author 
700 1 |a Fan, J.  |e author 
700 1 |a Shi, J.  |e author 
700 1 |a Shi, Y.  |e author 
700 1 |a Wang, Y.  |e author 
773 |t Journal of the Electrochemical Society