Durability Testing of Low-Iridium PEM Water Electrolysis Membrane Electrode Assemblies

Lowering the iridium loading at the anode of proton exchange membrane (PEM) water electrolyzers is crucial for the envisaged GW-scale deployment of PEM water electrolysis. Here, the durability of a novel iridium catalyst with a low iridium packing density, allowing for low iridium loadings without d...

Full description

Bibliographic Details
Main Authors: Allebrod, F. (Author), Bernt, M. (Author), Byrknes, J. (Author), Eickes, C. (Author), Ernst, M.F (Author), Gasteiger, H.A (Author), Gebauer, C. (Author), Kornherr, M. (Author), Möckl, M. (Author), Moskovtseva, A. (Author)
Format: Article
Language:English
Published: Institute of Physics 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02382nam a2200277Ia 4500
001 10.1149-1945-7111-ac6d14
008 220630s2022 CNT 000 0 und d
020 |a 00134651 (ISSN) 
245 1 0 |a Durability Testing of Low-Iridium PEM Water Electrolysis Membrane Electrode Assemblies 
260 0 |b Institute of Physics  |c 2022 
520 3 |a Lowering the iridium loading at the anode of proton exchange membrane (PEM) water electrolyzers is crucial for the envisaged GW-scale deployment of PEM water electrolysis. Here, the durability of a novel iridium catalyst with a low iridium packing density, allowing for low iridium loadings without decreasing the electrode thickness, is being investigated in a 10-cell PEM water electrolyzer short stack. The anodes of the membrane electrode assemblies (MEAs) of the first five cells utilize a conventional iridium catalyst, at loadings that serve as benchmark for today's industry standard (2 mgIr cm−2). The last five cells utilize the novel catalyst at 8-fold lower loadings (0.25 mgIr cm−2). The MEAs are based on Nafion® 117 and are tested for 3700 h by load cycling between 0.2 and 2.0 A cm−2, with weekly polarization curves and impedance diagnostics. For both catalysts, the performance degradation at low current densities is dominated by an increase of the overpotential for the oxygen evolution reaction (OER), whereby the OER mass activity of the novel catalyst remains ≈4-fold higher after 3700 h. The temporal evolution of the OER mass activities of the two catalysts will be analyzed in order to assess the suitability of the novel catalyst for industrial application. © 2022 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. 
650 0 4 |a low iridium loading OER catalyst 
650 0 4 |a PEMWE short stack durability testing 
650 0 4 |a Proton exchange membrane water electrolysis (PEMWE) 
700 1 0 |a Allebrod, F.  |e author 
700 1 0 |a Bernt, M.  |e author 
700 1 0 |a Byrknes, J.  |e author 
700 1 0 |a Eickes, C.  |e author 
700 1 0 |a Ernst, M.F.  |e author 
700 1 0 |a Gasteiger, H.A.  |e author 
700 1 0 |a Gebauer, C.  |e author 
700 1 0 |a Kornherr, M.  |e author 
700 1 0 |a Möckl, M.  |e author 
700 1 0 |a Moskovtseva, A.  |e author 
773 |t Journal of the Electrochemical Society 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1149/1945-7111/ac6d14