From biophysical to integrate-and-fire modeling

This article proposes a methodology to extract a low-dimensional integrate-and-fire model from an arbitrarily detailed single-compartment biophysical model. The method aims at relating the modulation of maximal conductance parameters in the biophysical model to the modulation of parameters in the pr...

Full description

Bibliographic Details
Main Authors: Drion, G. (Author), Sepulchre, R. (Author), Van Pottelbergh, T. (Author)
Format: Article
Language:English
Published: MIT Press Journals 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01568nam a2200349Ia 4500
001 10.1162-neco_a_01353
008 220427s2021 CNT 000 0 und d
020 |a 08997667 (ISSN) 
245 1 0 |a From biophysical to integrate-and-fire modeling 
260 0 |b MIT Press Journals  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1162/neco_a_01353 
520 3 |a This article proposes a methodology to extract a low-dimensional integrate-and-fire model from an arbitrarily detailed single-compartment biophysical model. The method aims at relating the modulation of maximal conductance parameters in the biophysical model to the modulation of parameters in the proposed integrate-and-fire model. The approach is illustrated on two well-documented examples of cellular neuromodulation: the transition between type I and type II excitability and the transition between spiking and bursting. © 2021 Massachusetts Institute of Technology. 
650 0 4 |a action potential 
650 0 4 |a Action Potentials 
650 0 4 |a biological model 
650 0 4 |a Biophysical model 
650 0 4 |a biophysics 
650 0 4 |a Biophysics 
650 0 4 |a Biophysics 
650 0 4 |a Conductance parameters 
650 0 4 |a Integrate-and-fire model 
650 0 4 |a Low dimensional 
650 0 4 |a Models, Neurological 
650 0 4 |a Modulation 
650 0 4 |a nerve cell 
650 0 4 |a Neuromodulation 
650 0 4 |a Neurons 
650 0 4 |a Type II 
700 1 |a Drion, G.  |e author 
700 1 |a Sepulchre, R.  |e author 
700 1 |a Van Pottelbergh, T.  |e author 
773 |t Neural Computation