SCC: an accurate imputation method for scRNA-seq dropouts based on a mixture model

Background: Single-cell RNA sequencing (scRNA-seq) enables the possibility of many in-depth transcriptomic analyses at a single-cell resolution. It’s already widely used for exploring the dynamic development process of life, studying the gene regulation mechanism, and discovering new cell types. How...

Full description

Bibliographic Details
Main Authors: Hu, J. (Author), Shang, X. (Author), Zheng, Y. (Author), Zhong, Y. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
RNA
Online Access:View Fulltext in Publisher
LEADER 02592nam a2200577Ia 4500
001 10.1186-s12859-020-03878-8
008 220427s2021 CNT 000 0 und d
020 |a 14712105 (ISSN) 
245 1 0 |a SCC: an accurate imputation method for scRNA-seq dropouts based on a mixture model 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s12859-020-03878-8 
520 3 |a Background: Single-cell RNA sequencing (scRNA-seq) enables the possibility of many in-depth transcriptomic analyses at a single-cell resolution. It’s already widely used for exploring the dynamic development process of life, studying the gene regulation mechanism, and discovering new cell types. However, the low RNA capture rate, which cause highly sparse expression with dropout, makes it difficult to do downstream analyses. Results: We propose a new method SCC to impute the dropouts of scRNA-seq data. Experiment results show that SCC gives competitive results compared to two existing methods while showing superiority in reducing the intra-class distance of cells and improving the clustering accuracy in both simulation and real data. Conclusions: SCC is an effective tool to resolve the dropout noise in scRNA-seq data. The code is freely accessible at https://github.com/nwpuzhengyan/SCC. © 2021, The Author(s). 
650 0 4 |a article 
650 0 4 |a biological model 
650 0 4 |a Cells 
650 0 4 |a Clustering accuracy 
650 0 4 |a Cytology 
650 0 4 |a Dropouts identification 
650 0 4 |a Dynamic development 
650 0 4 |a Effective tool 
650 0 4 |a Gene expression estimation 
650 0 4 |a gene expression profiling 
650 0 4 |a Gene Expression Profiling 
650 0 4 |a gene expression regulation 
650 0 4 |a Gene Expression Regulation 
650 0 4 |a Gene regulation mechanism 
650 0 4 |a genetics 
650 0 4 |a genomics 
650 0 4 |a Genomics 
650 0 4 |a Imputation methods 
650 0 4 |a Mixture model 
650 0 4 |a Mixture model 
650 0 4 |a Models, Genetic 
650 0 4 |a noise 
650 0 4 |a Noise 
650 0 4 |a procedures 
650 0 4 |a RNA 
650 0 4 |a Rna sequencing 
650 0 4 |a RNA, Small Cytoplasmic 
650 0 4 |a ScRNA-seq 
650 0 4 |a simulation 
650 0 4 |a single cell analysis 
650 0 4 |a Single cell resolution 
650 0 4 |a single cell RNA seq 
650 0 4 |a Single-Cell Analysis 
650 0 4 |a small cytoplasmic RNA 
700 1 |a Hu, J.  |e author 
700 1 |a Shang, X.  |e author 
700 1 |a Zheng, Y.  |e author 
700 1 |a Zhong, Y.  |e author 
773 |t BMC Bioinformatics