Modeling drug mechanism of action with large scale gene-expression profiles using GPAR, an artificial intelligence platform

Background: Querying drug-induced gene expression profiles with machine learning method is an effective way for revealing drug mechanism of actions (MOAs), which is strongly supported by the growth of large scale and high-throughput gene expression databases. However, due to the lack of code-free an...

Full description

Bibliographic Details
Main Authors: Gao, S. (Author), Han, L. (Author), Liu, G. (Author), Luo, D. (Author), Shan, G. (Author), Xiao, Z. (Author), Zhang, Y. (Author), Zhou, W. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
MOA
Online Access:View Fulltext in Publisher
LEADER 02865nam a2200613Ia 4500
001 10.1186-s12859-020-03915-6
008 220427s2021 CNT 000 0 und d
020 |a 14712105 (ISSN) 
245 1 0 |a Modeling drug mechanism of action with large scale gene-expression profiles using GPAR, an artificial intelligence platform 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s12859-020-03915-6 
520 3 |a Background: Querying drug-induced gene expression profiles with machine learning method is an effective way for revealing drug mechanism of actions (MOAs), which is strongly supported by the growth of large scale and high-throughput gene expression databases. However, due to the lack of code-free and user friendly applications, it is not easy for biologists and pharmacologists to model MOAs with state-of-art deep learning approach. Results: In this work, a newly developed online collaborative tool, Genetic profile-activity relationship (GPAR) was built to help modeling and predicting MOAs easily via deep learning. The users can use GPAR to customize their training sets to train self-defined MOA prediction models, to evaluate the model performances and to make further predictions automatically. Cross-validation tests show GPAR outperforms Gene set enrichment analysis in predicting MOAs. Conclusion: GPAR can serve as a better approach in MOAs prediction, which may facilitate researchers to generate more reliable MOA hypothesis. © 2020, The Author(s). 
650 0 4 |a artificial intelligence 
650 0 4 |a Artificial Intelligence 
650 0 4 |a biology 
650 0 4 |a Birds 
650 0 4 |a Collaborative tools 
650 0 4 |a Computational Biology 
650 0 4 |a Cross-validation tests 
650 0 4 |a Databases, Genetic 
650 0 4 |a Deep learning 
650 0 4 |a Deep learning 
650 0 4 |a drug 
650 0 4 |a Forecasting 
650 0 4 |a Gene expression 
650 0 4 |a Gene expression profiles 
650 0 4 |a Gene expression profiles 
650 0 4 |a Gene set enrichment analysis 
650 0 4 |a genetic database 
650 0 4 |a genetics 
650 0 4 |a L1000 
650 0 4 |a Learning approach 
650 0 4 |a Learning systems 
650 0 4 |a Machine learning methods 
650 0 4 |a Mechanism of action 
650 0 4 |a MOA 
650 0 4 |a Model performance 
650 0 4 |a Pharmaceutical Preparations 
650 0 4 |a pharmacology 
650 0 4 |a Pharmacology 
650 0 4 |a Predictive analytics 
650 0 4 |a software 
650 0 4 |a Software 
650 0 4 |a transcriptome 
650 0 4 |a Transcriptome 
700 1 |a Gao, S.  |e author 
700 1 |a Han, L.  |e author 
700 1 |a Liu, G.  |e author 
700 1 |a Luo, D.  |e author 
700 1 |a Shan, G.  |e author 
700 1 |a Xiao, Z.  |e author 
700 1 |a Zhang, Y.  |e author 
700 1 |a Zhou, W.  |e author 
773 |t BMC Bioinformatics