Cancer immune control dynamics: a clinical data driven model of systemic immunity in patients with metastatic melanoma

Background: Recent clinical advances in cancer immuno-therapeutics underscore the need for improved understanding of the complex relationship between cancer and the multiple, multi-functional, inter-dependent, cellular and humoral mediators/regulators of the human immune system. This interdisciplina...

Full description

Bibliographic Details
Main Authors: Becher, L.R.E (Author), Frisch, H.P (Author), Leontovich, A.A (Author), Markovic, S.N (Author), McElroy, V.F (Author), Nevala, W.K (Author), Sprau, A. (Author), Turner, J.D (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04494nam a2200661Ia 4500
001 10.1186-s12859-021-04025-7
008 220427s2021 CNT 000 0 und d
020 |a 14712105 (ISSN) 
245 1 0 |a Cancer immune control dynamics: a clinical data driven model of systemic immunity in patients with metastatic melanoma 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s12859-021-04025-7 
520 3 |a Background: Recent clinical advances in cancer immuno-therapeutics underscore the need for improved understanding of the complex relationship between cancer and the multiple, multi-functional, inter-dependent, cellular and humoral mediators/regulators of the human immune system. This interdisciplinary effort exploits engineering analysis methods utilized to investigate anomalous physical system behaviors to explore immune system behaviors. Cancer Immune Control Dynamics (CICD), a systems analysis approach, attempts to identify differences between systemic immune homeostasis of 27 healthy volunteers versus 14 patients with metastatic malignant melanoma based on daily serial measurements of conventional peripheral blood biomarkers (15 cell subsets, 35 cytokines). The modeling strategy applies engineering control theory to analyze an individual’s immune system based on the biomarkers’ dynamic non-linear oscillatory behaviors. The reverse engineering analysis uses a Singular Value Decomposition (SVD) algorithm to solve the inverse problem and identify a solution profile of the active biomarker relationships. Herein, 28,605 biologically possible biomarker interactions are modeled by a set of matrix equations creating a system interaction model. CICD quantifies the model with a participant’s biomarker data then computationally solves it to measure each relationship’s activity allowing a visualization of the individual’s current state of immunity. Results: CICD results provide initial evidence that this model-based analysis is consistent with identified roles of biomarkers in systemic immunity of cancer patients versus that of healthy volunteers. The mathematical computations alone identified a plausible network of immune cells, including T cells, natural killer (NK) cells, monocytes, and dendritic cells (DC) with cytokines MCP-1 [CXCL2], IP-10 [CXCL10], and IL-8 that play a role in sustaining the state of immunity in advanced cancer. Conclusions: With CICD modeling capabilities, the complexity of the immune system is mathematically quantified through thousands of possible interactions between multiple biomarkers. Therefore, the overall state of an individual’s immune system regardless of clinical status, is modeled as reflected in their blood samples. It is anticipated that CICD-based capabilities will provide tools to specifically address cancer and treatment modulated (immune checkpoint inhibitors) parameters of human immunity, revealing clinically relevant biological interactions. © 2021, The Author(s). 
650 0 4 |a Biological interactions 
650 0 4 |a biological marker 
650 0 4 |a Biomarkers 
650 0 4 |a Biomarkers 
650 0 4 |a Blood 
650 0 4 |a Cells 
650 0 4 |a Complex networks 
650 0 4 |a Complex relationships 
650 0 4 |a cytokine 
650 0 4 |a Cytokines 
650 0 4 |a Cytology 
650 0 4 |a Data visualization 
650 0 4 |a Dermatology 
650 0 4 |a Diseases 
650 0 4 |a human 
650 0 4 |a Human immune systems 
650 0 4 |a Humans 
650 0 4 |a Immune system 
650 0 4 |a Immune system behavior 
650 0 4 |a Inverse problems 
650 0 4 |a Math modeling 
650 0 4 |a Mathematical computation 
650 0 4 |a melanoma 
650 0 4 |a Melanoma 
650 0 4 |a Melanoma 
650 0 4 |a Natural killer cells 
650 0 4 |a Oncology 
650 0 4 |a Oncology 
650 0 4 |a Oscillatory behaviors 
650 0 4 |a Peripheral blood biomarkers 
650 0 4 |a Reverse engineering 
650 0 4 |a Singular value decomposition 
650 0 4 |a Singular value decomposition algorithms 
650 0 4 |a Systemic immunity 
650 0 4 |a Systems analysis 
650 0 4 |a T lymphocyte 
650 0 4 |a T-Lymphocytes 
700 1 |a Becher, L.R.E.  |e author 
700 1 |a Frisch, H.P.  |e author 
700 1 |a Leontovich, A.A.  |e author 
700 1 |a Markovic, S.N.  |e author 
700 1 |a McElroy, V.F.  |e author 
700 1 |a Nevala, W.K.  |e author 
700 1 |a Sprau, A.  |e author 
700 1 |a Turner, J.D.  |e author 
773 |t BMC Bioinformatics