Epidemic prediction of dengue fever based on vector compartment model and Markov chain Monte Carlo method

Background: Dengue epidemics is affected by vector-human interactive dynamics. Infectious disease prevention and control emphasize the timing intervention at the right diffusion phase. In such a way, control measures can be cost-effective, and epidemic incidents can be controlled before devastated c...

Full description

Bibliographic Details
Main Authors: Chang, K. (Author), Chen, Y.J (Author), Chen, Y.-M (Author), Ho, W.-H (Author), Lee, C.-H (Author), Tsai, J.-T (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04530nam a2200685Ia 4500
001 10.1186-s12859-021-04059-x
008 220427s2021 CNT 000 0 und d
020 |a 14712105 (ISSN) 
245 1 0 |a Epidemic prediction of dengue fever based on vector compartment model and Markov chain Monte Carlo method 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s12859-021-04059-x 
520 3 |a Background: Dengue epidemics is affected by vector-human interactive dynamics. Infectious disease prevention and control emphasize the timing intervention at the right diffusion phase. In such a way, control measures can be cost-effective, and epidemic incidents can be controlled before devastated consequence occurs. However, timing relations between a measurable signal and the onset of the pandemic are complex to be discovered, and the typical lag period regression is difficult to capture in these complex relations. This study investigates the dynamic diffusion pattern of the disease in terms of a probability distribution. We estimate the parameters of an epidemic compartment model with the cross-infection of patients and mosquitoes in various infection cycles. We comprehensively study the incorporated meteorological and mosquito factors that may affect the epidemic of dengue fever to predict dengue fever epidemics. Results: We develop a dual-parameter estimation algorithm for a composite model of the partial differential equations for vector-susceptible-infectious-recovered with exogeneity compartment model, Markov chain Montel Carlo method, and boundary element method to evaluate the epidemic periodicity under the effect of environmental factors of dengue fever, given the time series data of 2000–2016 from three cities with a population of 4.7 million. The established computer model of “energy accumulation-delayed diffusion-epidemics” is proven to be effective to predict the future trend of reported and unreported infected incidents. Our artificial intelligent algorithm can inform the authority to cease the larvae at the highest vector infection time. We find that the estimated dengue report rate is about 20%, which is close to the number of official announcements, and the percentage of infected vectors increases exponentially yearly. We suggest that the executive authorities should seriously consider the accumulated effect among infected populations. This established epidemic prediction model of dengue fever can be used to simulate and evaluate the best time to prevent and control dengue fever. Conclusions: Given our developed model, government epidemic prevention teams can apply this platform before they physically carry out the prevention work. The optimal suggestions from these models can be promptly accommodated when real-time data have been continuously corrected from clinics and related agents. © 2021, The Author(s). 
650 0 4 |a Aedes 
650 0 4 |a Aedes 
650 0 4 |a animal 
650 0 4 |a Animals 
650 0 4 |a Boundary element method 
650 0 4 |a Compartment modeling 
650 0 4 |a Control measures 
650 0 4 |a Cost effectiveness 
650 0 4 |a dengue 
650 0 4 |a Dengue 
650 0 4 |a Dengue fevers 
650 0 4 |a Dengue transmission 
650 0 4 |a Dengue transmission 
650 0 4 |a Diffusion 
650 0 4 |a Disease control 
650 0 4 |a Disease prevention and controls 
650 0 4 |a epidemic 
650 0 4 |a Epidemic prevention timing 
650 0 4 |a Epidemic prevention timing 
650 0 4 |a Epidemics 
650 0 4 |a Forecasting 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a Infectious disease 
650 0 4 |a IS costs 
650 0 4 |a Markov chain 
650 0 4 |a Markov chain Monte Carlo method 
650 0 4 |a Markov Chains 
650 0 4 |a Markov processes 
650 0 4 |a Monte Carlo method 
650 0 4 |a Monte Carlo Method 
650 0 4 |a Monte Carlo methods 
650 0 4 |a mosquito vector 
650 0 4 |a Mosquito Vectors 
650 0 4 |a Population statistics 
650 0 4 |a Probability distributions 
650 0 4 |a Sailing vessels 
650 0 4 |a Timing circuits 
650 0 4 |a Vectors 
650 0 4 |a Vector-susceptible-infectious-recovered with exogeneity 
650 0 4 |a Vector-susceptible-infectious-recovered with exogeneity (VSIRX) 
700 1 |a Chang, K.  |e author 
700 1 |a Chen, Y.J.  |e author 
700 1 |a Chen, Y.-M.  |e author 
700 1 |a Ho, W.-H.  |e author 
700 1 |a Lee, C.-H.  |e author 
700 1 |a Tsai, J.-T.  |e author 
773 |t BMC Bioinformatics