Pre-capture multiplexing provides additional power to detect copy number variation in exome sequencing

Background: As exome sequencing (ES) integrates into clinical practice, we should make every effort to utilize all information generated. Copy-number variation can lead to Mendelian disorders, but small copy-number variants (CNVs) often get overlooked or obscured by under-powered data collection. Ma...

Full description

Bibliographic Details
Main Authors: Berg, J.S (Author), Bizon, C. (Author), Bost, D.M (Author), Brandt, A.T (Author), Filer, D.L (Author), Jeffries, C.D (Author), Kuo, F. (Author), Li, Y. (Author), Mieczkowski, P.A (Author), Powell, B.C (Author), Robasky, K. (Author), Tilley, C.R (Author), Tilson, J.L (Author), Wilhelmsen, K.C (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03783nam a2200673Ia 4500
001 10.1186-s12859-021-04246-w
008 220427s2021 CNT 000 0 und d
020 |a 14712105 (ISSN) 
245 1 0 |a Pre-capture multiplexing provides additional power to detect copy number variation in exome sequencing 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s12859-021-04246-w 
520 3 |a Background: As exome sequencing (ES) integrates into clinical practice, we should make every effort to utilize all information generated. Copy-number variation can lead to Mendelian disorders, but small copy-number variants (CNVs) often get overlooked or obscured by under-powered data collection. Many groups have developed methodology for detecting CNVs from ES, but existing methods often perform poorly for small CNVs and rely on large numbers of samples not always available to clinical laboratories. Furthermore, methods often rely on Bayesian approaches requiring user-defined priors in the setting of insufficient prior knowledge. This report first demonstrates the benefit of multiplexed exome capture (pooling samples prior to capture), then presents a novel detection algorithm, mcCNV (“multiplexed capture CNV”), built around multiplexed capture. Results: We demonstrate: (1) multiplexed capture reduces inter-sample variance; (2) our mcCNV method, a novel depth-based algorithm for detecting CNVs from multiplexed capture ES data, improves the detection of small CNVs. We contrast our novel approach, agnostic to prior information, with the the commonly-used ExomeDepth. In a simulation study mcCNV demonstrated a favorable false discovery rate (FDR). When compared to calls made from matched genome sequencing, we find the mcCNV algorithm performs comparably to ExomeDepth. Conclusion: Implementing multiplexed capture increases power to detect single-exon CNVs. The novel mcCNV algorithm may provide a more favorable FDR than ExomeDepth. The greatest benefits of our approach derive from (1) not requiring a database of reference samples and (2) not requiring prior information about the prevalance or size of variants. © 2021, The Author(s). 
650 0 4 |a Agnostic 
650 0 4 |a algorithm 
650 0 4 |a Algorithms 
650 0 4 |a article 
650 0 4 |a Bayes theorem 
650 0 4 |a Bayes Theorem 
650 0 4 |a Bayesian approaches 
650 0 4 |a Bayesian networks 
650 0 4 |a Capture 
650 0 4 |a Clinical practices 
650 0 4 |a copy number variation 
650 0 4 |a Copy number variation 
650 0 4 |a Copy number variations 
650 0 4 |a detection algorithm 
650 0 4 |a Detection algorithm 
650 0 4 |a DNA Copy Number Variations 
650 0 4 |a exome 
650 0 4 |a Exome 
650 0 4 |a Exome sequencing 
650 0 4 |a false discovery rate 
650 0 4 |a False discovery rate 
650 0 4 |a genetics 
650 0 4 |a Genome sequencing 
650 0 4 |a high throughput sequencing 
650 0 4 |a High-Throughput Nucleotide Sequencing 
650 0 4 |a human 
650 0 4 |a Prior information 
650 0 4 |a simulation 
650 0 4 |a Simulation studies 
650 0 4 |a whole exome sequencing 
650 0 4 |a whole exome sequencing 
650 0 4 |a Whole Exome Sequencing 
700 1 |a Berg, J.S.  |e author 
700 1 |a Bizon, C.  |e author 
700 1 |a Bost, D.M.  |e author 
700 1 |a Brandt, A.T.  |e author 
700 1 |a Filer, D.L.  |e author 
700 1 |a Jeffries, C.D.  |e author 
700 1 |a Kuo, F.  |e author 
700 1 |a Li, Y.  |e author 
700 1 |a Mieczkowski, P.A.  |e author 
700 1 |a Powell, B.C.  |e author 
700 1 |a Robasky, K.  |e author 
700 1 |a Tilley, C.R.  |e author 
700 1 |a Tilson, J.L.  |e author 
700 1 |a Wilhelmsen, K.C.  |e author 
773 |t BMC Bioinformatics