Single-cell classification using graph convolutional networks

Background: Analyzing single-cell RNA sequencing (scRNAseq) data plays an important role in understanding the intrinsic and extrinsic cellular processes in biological and biomedical research. One significant effort in this area is the identification of cell types. With the availability of a huge amo...

Full description

Bibliographic Details
Main Authors: Bai, J. (Author), Nabavi, S. (Author), Wang, T. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03243nam a2200529Ia 4500
001 10.1186-s12859-021-04278-2
008 220427s2021 CNT 000 0 und d
020 |a 14712105 (ISSN) 
245 1 0 |a Single-cell classification using graph convolutional networks 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s12859-021-04278-2 
520 3 |a Background: Analyzing single-cell RNA sequencing (scRNAseq) data plays an important role in understanding the intrinsic and extrinsic cellular processes in biological and biomedical research. One significant effort in this area is the identification of cell types. With the availability of a huge amount of single cell sequencing data and discovering more and more cell types, classifying cells into known cell types has become a priority nowadays. Several methods have been introduced to classify cells utilizing gene expression data. However, incorporating biological gene interaction networks has been proved valuable in cell classification procedures. Results: In this study, we propose a multimodal end-to-end deep learning model, named sigGCN, for cell classification that combines a graph convolutional network (GCN) and a neural network to exploit gene interaction networks. We used standard classification metrics to evaluate the performance of the proposed method on the within-dataset classification and the cross-dataset classification. We compared the performance of the proposed method with those of the existing cell classification tools and traditional machine learning classification methods. Conclusions: Results indicate that the proposed method outperforms other commonly used methods in terms of classification accuracy and F1 scores. This study shows that the integration of prior knowledge about gene interactions with gene expressions using GCN methodologies can extract effective features improving the performance of cell classification. © 2021, The Author(s). 
650 0 4 |a article 
650 0 4 |a Biomedical research 
650 0 4 |a Cell classification 
650 0 4 |a Cell classification 
650 0 4 |a Classification (of information) 
650 0 4 |a Classification accuracy 
650 0 4 |a Convolution 
650 0 4 |a Convolutional networks 
650 0 4 |a convolutional neural network 
650 0 4 |a Convolutional neural network 
650 0 4 |a Convolutional neural networks 
650 0 4 |a Cytology 
650 0 4 |a deep learning 
650 0 4 |a Deep learning 
650 0 4 |a Deep learning 
650 0 4 |a gene expression 
650 0 4 |a Gene expression 
650 0 4 |a Gene Expression Data 
650 0 4 |a gene interaction 
650 0 4 |a Gene interaction networks 
650 0 4 |a Gene interactions 
650 0 4 |a gene regulatory network 
650 0 4 |a Gene Regulatory Networks 
650 0 4 |a Graph convolutional neural network 
650 0 4 |a Learning systems 
650 0 4 |a machine learning 
650 0 4 |a Machine Learning 
650 0 4 |a Machine learning classification 
650 0 4 |a Neural Networks, Computer 
650 0 4 |a single cell RNA seq 
650 0 4 |a Single cell RNA sequencing 
700 1 |a Bai, J.  |e author 
700 1 |a Nabavi, S.  |e author 
700 1 |a Wang, T.  |e author 
773 |t BMC Bioinformatics