SPLICE-q: a Python tool for genome-wide quantification of splicing efficiency

Background: Introns are generally removed from primary transcripts to form mature RNA molecules in a post-transcriptional process called splicing. An efficient splicing of primary transcripts is an essential step in gene expression and its misregulation is related to numerous human diseases. Thus, t...

Full description

Bibliographic Details
Main Authors: de Melo Costa, V.R (Author), Louloupi, A. (Author), Ørom, U.A.V (Author), Pfeuffer, J. (Author), Piro, R.M (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
RNA
Online Access:View Fulltext in Publisher
LEADER 03108nam a2200553Ia 4500
001 10.1186-s12859-021-04282-6
008 220427s2021 CNT 000 0 und d
020 |a 14712105 (ISSN) 
245 1 0 |a SPLICE-q: a Python tool for genome-wide quantification of splicing efficiency 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s12859-021-04282-6 
520 3 |a Background: Introns are generally removed from primary transcripts to form mature RNA molecules in a post-transcriptional process called splicing. An efficient splicing of primary transcripts is an essential step in gene expression and its misregulation is related to numerous human diseases. Thus, to better understand the dynamics of this process and the perturbations that might be caused by aberrant transcript processing it is important to quantify splicing efficiency. Results: Here, we introduce SPLICE-q, a fast and user-friendly Python tool for genome-wide SPLICing Efficiency quantification. It supports studies focusing on the implications of splicing efficiency in transcript processing dynamics. SPLICE-q uses aligned reads from strand-specific RNA-seq to quantify splicing efficiency for each intron individually and allows the user to select different levels of restrictiveness concerning the introns’ overlap with other genomic elements such as exons of other genes. We applied SPLICE-q to globally assess the dynamics of intron excision in yeast and human nascent RNA-seq. We also show its application using total RNA-seq from a patient-matched prostate cancer sample. Conclusions: Our analyses illustrate that SPLICE-q is suitable to detect a progressive increase of splicing efficiency throughout a time course of nascent RNA-seq and it might be useful when it comes to understanding cancer progression beyond mere gene expression levels. SPLICE-q is available at: https://github.com/vrmelo/SPLICE-q © 2021, The Author(s). 
650 0 4 |a Aberrant transcript 
650 0 4 |a alternative RNA splicing 
650 0 4 |a Alternative Splicing 
650 0 4 |a Cancer progression 
650 0 4 |a Co-transcriptional splicing 
650 0 4 |a Diseases 
650 0 4 |a Dynamics 
650 0 4 |a Efficiency 
650 0 4 |a Gene expression 
650 0 4 |a Gene expression levels 
650 0 4 |a genetics 
650 0 4 |a genome 
650 0 4 |a Genome 
650 0 4 |a High level languages 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a intron 
650 0 4 |a Introns 
650 0 4 |a ITS applications 
650 0 4 |a Post-transcriptional process 
650 0 4 |a Prostate cancers 
650 0 4 |a RNA 
650 0 4 |a RNA molecules 
650 0 4 |a RNA splice site 
650 0 4 |a RNA Splice Sites 
650 0 4 |a RNA splicing 
650 0 4 |a RNA Splicing 
650 0 4 |a RNA-seq 
650 0 4 |a Splicing dynamics 
650 0 4 |a Splicing efficiency 
650 0 4 |a User friendly 
700 1 |a de Melo Costa, V.R.  |e author 
700 1 |a Louloupi, A.  |e author 
700 1 |a Ørom, U.A.V.  |e author 
700 1 |a Pfeuffer, J.  |e author 
700 1 |a Piro, R.M.  |e author 
773 |t BMC Bioinformatics