Integrative, multi-omics, analysis of blood samples improves model predictions: applications to cancer

Background: Cancer genomic studies often include data collected from several omics platforms. Each omics data source contributes to the understanding of the underlying biological process via source specific (“individual”) patterns of variability. At the same time, statistical associations and potent...

Full description

Bibliographic Details
Main Authors: Haugdahl Nøst, T. (Author), Møllersen, K. (Author), Ponzi, E. (Author), Thoresen, M. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
RNA
Online Access:View Fulltext in Publisher
LEADER 03895nam a2200625Ia 4500
001 10.1186-s12859-021-04296-0
008 220427s2021 CNT 000 0 und d
020 |a 14712105 (ISSN) 
245 1 0 |a Integrative, multi-omics, analysis of blood samples improves model predictions: applications to cancer 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s12859-021-04296-0 
520 3 |a Background: Cancer genomic studies often include data collected from several omics platforms. Each omics data source contributes to the understanding of the underlying biological process via source specific (“individual”) patterns of variability. At the same time, statistical associations and potential interactions among the different data sources can reveal signals from common biological processes that might not be identified by single source analyses. These common patterns of variability are referred to as “shared” or “joint”. In this work, we show how the use of joint and individual components can lead to better predictive models, and to a deeper understanding of the biological process at hand. We identify joint and individual contributions of DNA methylation, miRNA and mRNA expression collected from blood samples in a lung cancer case–control study nested within the Norwegian Women and Cancer (NOWAC) cohort study, and we use such components to build prediction models for case–control and metastatic status. To assess the quality of predictions, we compare models based on simultaneous, integrative analysis of multi-source omics data to a standard non-integrative analysis of each single omics dataset, and to penalized regression models. Additionally, we apply the proposed approach to a breast cancer dataset from The Cancer Genome Atlas. Results: Our results show how an integrative analysis that preserves both components of variation is more appropriate than standard multi-omics analyses that are not based on such a distinction. Both joint and individual components are shown to contribute to a better quality of model predictions, and facilitate the interpretation of the underlying biological processes in lung cancer development. Conclusions: In the presence of multiple omics data sources, we recommend the use of data integration techniques that preserve the joint and individual components across the omics sources. We show how the inclusion of such components increases the quality of model predictions of clinical outcomes. © 2021, The Author(s). 
650 0 4 |a Alkylation 
650 0 4 |a Association reactions 
650 0 4 |a Biological organs 
650 0 4 |a Biological process 
650 0 4 |a Blood 
650 0 4 |a Breast Neoplasms 
650 0 4 |a breast tumor 
650 0 4 |a case control study 
650 0 4 |a Case-Control Studies 
650 0 4 |a Clinical outcome 
650 0 4 |a cohort analysis 
650 0 4 |a Cohort Studies 
650 0 4 |a Data integration 
650 0 4 |a Data integration 
650 0 4 |a Dimension reduction 
650 0 4 |a Diseases 
650 0 4 |a female 
650 0 4 |a Female 
650 0 4 |a Forecasting 
650 0 4 |a genomics 
650 0 4 |a Genomics 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a Individual components 
650 0 4 |a Integration techniques 
650 0 4 |a Integrative analysis 
650 0 4 |a Joint and individual variance explained 
650 0 4 |a microRNA 
650 0 4 |a MicroRNAs 
650 0 4 |a Multi-omics 
650 0 4 |a Prediction model 
650 0 4 |a Prediction models 
650 0 4 |a Predictive analytics 
650 0 4 |a Predictive models 
650 0 4 |a Quality control 
650 0 4 |a Quality of predictions 
650 0 4 |a Regression analysis 
650 0 4 |a RNA 
700 1 |a Haugdahl Nøst, T.  |e author 
700 1 |a Møllersen, K.  |e author 
700 1 |a Ponzi, E.  |e author 
700 1 |a Thoresen, M.  |e author 
773 |t BMC Bioinformatics