A neural network-based method for polypharmacy side effects prediction

Background: Polypharmacy is a type of treatment that involves the concurrent use of multiple medications. Drugs may interact when they are used simultaneously. So, understanding and mitigating polypharmacy side effects are critical for patient safety and health. Since the known polypharmacy side eff...

Full description

Bibliographic Details
Main Authors: Aghdam, R. (Author), Eslahchi, C. (Author), Masumshah, R. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03877nam a2200505Ia 4500
001 10.1186-s12859-021-04298-y
008 220427s2021 CNT 000 0 und d
020 |a 14712105 (ISSN) 
245 1 0 |a A neural network-based method for polypharmacy side effects prediction 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s12859-021-04298-y 
520 3 |a Background: Polypharmacy is a type of treatment that involves the concurrent use of multiple medications. Drugs may interact when they are used simultaneously. So, understanding and mitigating polypharmacy side effects are critical for patient safety and health. Since the known polypharmacy side effects are rare and they are not detected in clinical trials, computational methods are developed to model polypharmacy side effects. Results: We propose a neural network-based method for polypharmacy side effects prediction (NNPS) by using novel feature vectors based on mono side effects, and drug–protein interaction information. The proposed method is fast and efficient which allows the investigation of large numbers of polypharmacy side effects. Our novelty is defining new feature vectors for drugs and combining them with a neural network architecture to apply for the context of polypharmacy side effects prediction. We compare NNPS on a benchmark dataset to predict 964 polypharmacy side effects against 5 well-established methods and show that NNPS achieves better results than the results of all 5 methods in terms of accuracy, complexity, and running time speed. NNPS outperforms about 9.2% in Area Under the Receiver-Operating Characteristic, 12.8% in Area Under the Precision–Recall Curve, 8.6% in F-score, 10.3% in Accuracy, and 18.7% in Matthews Correlation Coefficient with 5-fold cross-validation against the best algorithm among other well-established methods (Decagon method). Also, the running time of the Decagon method which is 15 days for one fold of cross-validation is reduced to 8 h by the NNPS method. Conclusions: The performance of NNPS is benchmarked against 5 well-known methods, Decagon, Concatenated drug features, Deep Walk, DEDICOM, and RESCAL, for 964 polypharmacy side effects. We adopt the 5-fold cross-validation for 50 iterations and use the average of the results to assess the performance of the NNPS method. The evaluation of the NNPS against five well-known methods, in terms of accuracy, complexity, and running time speed shows the performance of the presented method for an essential and challenging problem in pharmacology. Datasets and code for NNPS algorithm are freely accessible at https://github.com/raziyehmasumshah/NNPS. © 2021, The Author(s). 
650 0 4 |a adverse drug reaction 
650 0 4 |a algorithm 
650 0 4 |a Algorithms 
650 0 4 |a Benchmark datasets 
650 0 4 |a Clinical trial 
650 0 4 |a Complex networks 
650 0 4 |a Correlation coefficient 
650 0 4 |a Cross validation 
650 0 4 |a Drug interactions 
650 0 4 |a Drug–drug interactions 
650 0 4 |a Drug–protein interactions 
650 0 4 |a Drug-Related Side Effects and Adverse Reactions 
650 0 4 |a Feature vectors 
650 0 4 |a Forecasting 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a Network architecture 
650 0 4 |a Neural network 
650 0 4 |a Neural networks 
650 0 4 |a Neural Networks, Computer 
650 0 4 |a Patient safety 
650 0 4 |a Petroleum reservoir evaluation 
650 0 4 |a polypharmacy 
650 0 4 |a Polypharmacy 
650 0 4 |a Polypharmacy side effects prediction 
650 0 4 |a Protein interaction 
650 0 4 |a receiver operating characteristic 
650 0 4 |a Receiver operating characteristics 
650 0 4 |a ROC Curve 
700 1 |a Aghdam, R.  |e author 
700 1 |a Eslahchi, C.  |e author 
700 1 |a Masumshah, R.  |e author 
773 |t BMC Bioinformatics