Modelling the bioinformatics tertiary analysis research process

Background: With the advancements of Next Generation Techniques, a tremendous amount of genomic information has been made available to be analyzed by means of computational methods. Bioinformatics Tertiary Analysis is a complex multidisciplinary process that represents the final step of the whole bi...

Full description

Bibliographic Details
Main Authors: Crovari, P. (Author), Garzotto, F. (Author), Pidò, S. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03212nam a2200529Ia 4500
001 10.1186-s12859-021-04310-5
008 220427s2021 CNT 000 0 und d
020 |a 14712105 (ISSN) 
245 1 0 |a Modelling the bioinformatics tertiary analysis research process 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s12859-021-04310-5 
520 3 |a Background: With the advancements of Next Generation Techniques, a tremendous amount of genomic information has been made available to be analyzed by means of computational methods. Bioinformatics Tertiary Analysis is a complex multidisciplinary process that represents the final step of the whole bioinformatics analysis pipeline. Despite the popularity of the subject, the Bioinformatics Tertiary Analysis process has not yet been specified in a systematic way. The lack of a reference model results into a plethora of technological tools that are designed mostly on the data and not on the human process involved in Tertiary Analysis, making such systems difficult to use and to integrate. Methods: To address this problem, we propose a conceptual model that captures the salient characteristics of the research methods and human tasks involved in Bioinformatics Tertiary Analysis. The model is grounded on a user study that involved bioinformatics specialists for the elicitation of a hierarchical task tree representing the Tertiary Analysis process. The outcome was refined and validated using the results of a vast survey of the literature reporting examples of Bioinformatics Tertiary Analysis activities. Results: The final hierarchical task tree was then converted into an ontological representation using an ontology standard formalism. The results of our research provides a reference process model for Tertiary Analysis that can be used both to analyze and to compare existing tools, or to design new tools. Conclusions: To highlight the potential of our approach and to exemplify its concrete applications, we describe a new bioinformatics tool and how the proposed process model informed its design. © 2021, The Author(s). 
650 0 4 |a Analysis process 
650 0 4 |a article 
650 0 4 |a bioinformatics 
650 0 4 |a Bioinformatics 
650 0 4 |a Bioinformatics 
650 0 4 |a biology 
650 0 4 |a Computational Biology 
650 0 4 |a conceptual model 
650 0 4 |a Forestry 
650 0 4 |a Generation techniques 
650 0 4 |a Genomic information 
650 0 4 |a genomics 
650 0 4 |a Genomics 
650 0 4 |a Hierarchical task tree 
650 0 4 |a Hierarchical task tree 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a methodology 
650 0 4 |a Multi-disciplinary process 
650 0 4 |a ontology 
650 0 4 |a Ontology 
650 0 4 |a process model 
650 0 4 |a Research Design 
650 0 4 |a Research methodologies 
650 0 4 |a Research methodology 
650 0 4 |a Research process 
650 0 4 |a Task tree 
650 0 4 |a Tertiary analyse 
650 0 4 |a Tertiary analysis 
650 0 4 |a User study 
650 0 4 |a User study 
700 1 |a Crovari, P.  |e author 
700 1 |a Garzotto, F.  |e author 
700 1 |a Pidò, S.  |e author 
773 |t BMC Bioinformatics