HELLO: improved neural network architectures and methodologies for small variant calling

Background: Modern Next Generation- and Third Generation- Sequencing methods such as Illumina and PacBio Circular Consensus Sequencing platforms provide accurate sequencing data. Parallel developments in Deep Learning have enabled the application of Deep Neural Networks to variant calling, surpassin...

Full description

Bibliographic Details
Main Authors: Chen, D. (Author), Klee, E.W (Author), Lumetta, S.S (Author), Ramachandran, A. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03462nam a2200565Ia 4500
001 10.1186-s12859-021-04311-4
008 220427s2021 CNT 000 0 und d
020 |a 14712105 (ISSN) 
245 1 0 |a HELLO: improved neural network architectures and methodologies for small variant calling 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s12859-021-04311-4 
520 3 |a Background: Modern Next Generation- and Third Generation- Sequencing methods such as Illumina and PacBio Circular Consensus Sequencing platforms provide accurate sequencing data. Parallel developments in Deep Learning have enabled the application of Deep Neural Networks to variant calling, surpassing the accuracy of classical approaches in many settings. DeepVariant, arguably the most popular among such methods, transforms the problem of variant calling into one of image recognition where a Deep Neural Network analyzes sequencing data that is formatted as images, achieving high accuracy. In this paper, we explore an alternative approach to designing Deep Neural Networks for variant calling, where we use meticulously designed Deep Neural Network architectures and customized variant inference functions that account for the underlying nature of sequencing data instead of converting the problem to one of image recognition. Results: Results from 27 whole-genome variant calling experiments spanning Illumina, PacBio and hybrid Illumina-PacBio settings suggest that our method allows vastly smaller Deep Neural Networks to outperform the Inception-v3 architecture used in DeepVariant for indel and substitution-type variant calls. For example, our method reduces the number of indel call errors by up to 18%, 55% and 65% for Illumina, PacBio and hybrid Illumina-PacBio variant calling respectively, compared to a similarly trained DeepVariant pipeline. In these cases, our models are between 7 and 14 times smaller. Conclusions: We believe that the improved accuracy and problem-specific customization of our models will enable more accurate pipelines and further method development in the field. HELLO is available at https://github.com/anands-repo/hello © 2021, The Author(s). 
650 0 4 |a article 
650 0 4 |a Classical approach 
650 0 4 |a deep learning 
650 0 4 |a Deep learning 
650 0 4 |a Deep learning 
650 0 4 |a deep neural network 
650 0 4 |a Deep neural networks 
650 0 4 |a Deep neural networks 
650 0 4 |a diagnostic test accuracy study 
650 0 4 |a high throughput sequencing 
650 0 4 |a High-accuracy 
650 0 4 |a High-Throughput Nucleotide Sequencing 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a Hybrid variant calling 
650 0 4 |a Illumina 
650 0 4 |a Illumina 
650 0 4 |a Image recognition 
650 0 4 |a indel mutation 
650 0 4 |a INDEL Mutation 
650 0 4 |a Inference functions 
650 0 4 |a Method development 
650 0 4 |a molecular recognition 
650 0 4 |a Network architecture 
650 0 4 |a Neural networks 
650 0 4 |a Neural Networks, Computer 
650 0 4 |a PacBio 
650 0 4 |a Parallel development 
650 0 4 |a pipeline 
650 0 4 |a Pipelines 
650 0 4 |a Sequencing method 
650 0 4 |a Third generation 
650 0 4 |a Variant calling 
700 1 |a Chen, D.  |e author 
700 1 |a Klee, E.W.  |e author 
700 1 |a Lumetta, S.S.  |e author 
700 1 |a Ramachandran, A.  |e author 
773 |t BMC Bioinformatics