Emulating complex simulations by machine learning methods

Background: The aim of the present paper is to construct an emulator of a complex biological system simulator using a machine learning approach. More specifically, the simulator is a patient-specific model that integrates metabolic, nutritional, and lifestyle data to predict the metabolic and inflam...

Full description

Bibliographic Details
Main Authors: Castiglione, F. (Author), Stolfi, P. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03301nam a2200517Ia 4500
001 10.1186-s12859-021-04354-7
008 220427s2021 CNT 000 0 und d
020 |a 14712105 (ISSN) 
245 1 0 |a Emulating complex simulations by machine learning methods 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s12859-021-04354-7 
520 3 |a Background: The aim of the present paper is to construct an emulator of a complex biological system simulator using a machine learning approach. More specifically, the simulator is a patient-specific model that integrates metabolic, nutritional, and lifestyle data to predict the metabolic and inflammatory processes underlying the development of type-2 diabetes in absence of familiarity. Given the very high incidence of type-2 diabetes, the implementation of this predictive model on mobile devices could provide a useful instrument to assess the risk of the disease for aware individuals. The high computational cost of the developed model, being a mixture of agent-based and ordinary differential equations and providing a dynamic multivariate output, makes the simulator executable only on powerful workstations but not on mobile devices. Hence the need to implement an emulator with a reduced computational cost that can be executed on mobile devices to provide real-time self-monitoring. Results: Similarly to our previous work, we propose an emulator based on a machine learning algorithm but here we consider a different approach which turn out to have better performances, indeed in terms of root mean square error we have an improvement of two order magnitude. We tested the proposed emulator on samples containing different number of simulated trajectories, and it turned out that the fitted trajectories are able to predict with high accuracy the entire dynamics of the simulator output variables. We apply the emulator to control the level of inflammation while leveraging on the nutritional input. Conclusion: The proposed emulator can be implemented and executed on mobile health devices to perform quick-and-easy self-monitoring assessments. © 2021, The Author(s). 
650 0 4 |a algorithm 
650 0 4 |a Algorithms 
650 0 4 |a Complex biological systems 
650 0 4 |a Complex simulation 
650 0 4 |a Computational costs 
650 0 4 |a Computational modelling 
650 0 4 |a Computational modelling 
650 0 4 |a Diabetes Mellitus, Type 2 
650 0 4 |a Emulation 
650 0 4 |a Emulation 
650 0 4 |a Forecasting 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a Learning algorithms 
650 0 4 |a machine learning 
650 0 4 |a Machine learning 
650 0 4 |a Machine Learning 
650 0 4 |a Machine learning methods 
650 0 4 |a Mean square error 
650 0 4 |a Metabolism 
650 0 4 |a non insulin dependent diabetes mellitus 
650 0 4 |a Ordinary differential equations 
650 0 4 |a Risk assessment 
650 0 4 |a Risk prediction 
650 0 4 |a Risk predictions 
650 0 4 |a Self-assessment 
650 0 4 |a Self-assessment 
650 0 4 |a Self-monitoring 
650 0 4 |a Simulators 
650 0 4 |a Type-2 diabetes 
650 0 4 |a Type-2 diabetes 
700 1 |a Castiglione, F.  |e author 
700 1 |a Stolfi, P.  |e author 
773 |t BMC Bioinformatics