CorDiffViz: an R package for visualizing multi-omics differential correlation networks

Background: Differential correlation networks are increasingly used to delineate changes in interactions among biomolecules. They characterize differences between omics networks under two different conditions, and can be used to delineate mechanisms of disease initiation and progression. Results: We...

Full description

Bibliographic Details
Main Authors: Drton, M. (Author), Promislow, D.E.L (Author), Shojaie, A. (Author), Yu, S. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02650nam a2200493Ia 4500
001 10.1186-s12859-021-04383-2
008 220427s2021 CNT 000 0 und d
020 |a 14712105 (ISSN) 
245 1 0 |a CorDiffViz: an R package for visualizing multi-omics differential correlation networks 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s12859-021-04383-2 
520 3 |a Background: Differential correlation networks are increasingly used to delineate changes in interactions among biomolecules. They characterize differences between omics networks under two different conditions, and can be used to delineate mechanisms of disease initiation and progression. Results: We present a new R package, CorDiffViz, that facilitates the estimation and visualization of differential correlation networks using multiple correlation measures and inference methods. The software is implemented in R, HTML and Javascript, and is available at https://github.com/sqyu/CorDiffViz. Visualization has been tested for the Chrome and Firefox web browsers. A demo is available at https://diffcornet.github.io/CorDiffViz/demo.html. Conclusions: Our software offers considerable flexibility by allowing the user to interact with the visualization and choose from different estimation methods and visualizations. It also allows the user to easily toggle between correlation networks for samples under one condition and differential correlations between samples under two conditions. Moreover, the software facilitates integrative analysis of cross-correlation networks between two omics data sets. © 2021, The Author(s). 
650 0 4 |a Condition 
650 0 4 |a Correlation measures 
650 0 4 |a Correlation network 
650 0 4 |a Correlation networks 
650 0 4 |a Data integration 
650 0 4 |a Data integration 
650 0 4 |a Data visualization 
650 0 4 |a Differential correlation 
650 0 4 |a Differential correlations 
650 0 4 |a Disease initiations 
650 0 4 |a Disease progression 
650 0 4 |a HTML 
650 0 4 |a HTTP 
650 0 4 |a Inference methods 
650 0 4 |a Multiple correlation 
650 0 4 |a 'omics' 
650 0 4 |a Omics 
650 0 4 |a software 
650 0 4 |a Software 
650 0 4 |a Undirected graph 
650 0 4 |a Undirected graphs 
650 0 4 |a Undirected graphs 
650 0 4 |a Visualization 
650 0 4 |a Visualization 
650 0 4 |a web browser 
650 0 4 |a Web Browser 
650 0 4 |a Web browsers 
700 1 |a Drton, M.  |e author 
700 1 |a Promislow, D.E.L.  |e author 
700 1 |a Shojaie, A.  |e author 
700 1 |a Yu, S.  |e author 
773 |t BMC Bioinformatics