Fast parallel construction of variable-length Markov chains

Background: Alignment-free methods are a popular approach for comparing biological sequences, including complete genomes. The methods range from probability distributions of sequence composition to first and higher-order Markov chains, where a k-th order Markov chain over DNA has 4 k formal paramete...

Full description

Bibliographic Details
Main Authors: Gustafsson, J. (Author), Norberg, P. (Author), Qvick-Wester, J.R (Author), Schliep, A. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
DNA
Online Access:View Fulltext in Publisher
LEADER 03403nam a2200637Ia 4500
001 10.1186-s12859-021-04387-y
008 220427s2021 CNT 000 0 und d
020 |a 14712105 (ISSN) 
245 1 0 |a Fast parallel construction of variable-length Markov chains 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s12859-021-04387-y 
520 3 |a Background: Alignment-free methods are a popular approach for comparing biological sequences, including complete genomes. The methods range from probability distributions of sequence composition to first and higher-order Markov chains, where a k-th order Markov chain over DNA has 4 k formal parameters. To circumvent this exponential growth in parameters, variable-length Markov chains (VLMCs) have gained popularity for applications in molecular biology and other areas. VLMCs adapt the depth depending on sequence context and thus curtail excesses in the number of parameters. The scarcity of available fast, or even parallel software tools, prompted the development of a parallel implementation using lazy suffix trees and a hash-based alternative. Results: An extensive evaluation was performed on genomes ranging from 12Mbp to 22Gbp. Relevant learning parameters were chosen guided by the Bayesian Information Criterion (BIC) to avoid over-fitting. Our implementation greatly improves upon the state-of-the-art even in serial execution. It exhibits very good parallel scaling with speed-ups for long sequences close to the optimum indicated by Amdahl’s law of 3 for 4 threads and about 6 for 16 threads, respectively. Conclusions: Our parallel implementation released as open-source under the GPLv3 license provides a practically useful alternative to the state-of-the-art which allows the construction of VLMCs even for very large genomes significantly faster than previously possible. Additionally, our parameter selection based on BIC gives guidance to end-users comparing genomes. © 2021, The Author(s). 
650 0 4 |a algorithm 
650 0 4 |a Alignment-free 
650 0 4 |a Alignment-free 
650 0 4 |a article 
650 0 4 |a Bayes theorem 
650 0 4 |a Bayes Theorem 
650 0 4 |a Bayesian information criterion 
650 0 4 |a Biological sequences 
650 0 4 |a Complete genomes 
650 0 4 |a DNA 
650 0 4 |a DNA 
650 0 4 |a Genes 
650 0 4 |a genome 
650 0 4 |a Genome 
650 0 4 |a learning 
650 0 4 |a licence 
650 0 4 |a Markov chain 
650 0 4 |a Markov chain 
650 0 4 |a Markov Chains 
650 0 4 |a Markov processes 
650 0 4 |a molecular biology 
650 0 4 |a Molecular biology 
650 0 4 |a Open source software 
650 0 4 |a Open systems 
650 0 4 |a Parallel algorithms 
650 0 4 |a Parallel construction 
650 0 4 |a Parallel implementations 
650 0 4 |a Probability distributions 
650 0 4 |a Probability: distributions 
650 0 4 |a sequence analysis 
650 0 4 |a Sequence analysis 
650 0 4 |a Sequence analysis 
650 0 4 |a software 
650 0 4 |a software 
650 0 4 |a Software 
650 0 4 |a State of the art 
650 0 4 |a Variable length Markov chains 
650 0 4 |a Variable-length Markov chain 
650 0 4 |a velocity 
700 1 |a Gustafsson, J.  |e author 
700 1 |a Norberg, P.  |e author 
700 1 |a Qvick-Wester, J.R.  |e author 
700 1 |a Schliep, A.  |e author 
773 |t BMC Bioinformatics