Predictive modeling of gene expression regulation

Background: In-depth analysis of regulation networks of genes aberrantly expressed in cancer is essential for better understanding tumors and identifying key genes that could be therapeutically targeted. Results: We developed a quantitative analysis approach to investigate the main biological relati...

Full description

Bibliographic Details
Main Authors: Damia, G. (Author), Fratelli, M. (Author), Ganzinelli, M. (Author), Guffanti, F. (Author), Masseroli, M. (Author), Matteucci, M. (Author), Regondi, C. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03452nam a2200625Ia 4500
001 10.1186-s12859-021-04481-1
008 220427s2021 CNT 000 0 und d
020 |a 14712105 (ISSN) 
245 1 0 |a Predictive modeling of gene expression regulation 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s12859-021-04481-1 
520 3 |a Background: In-depth analysis of regulation networks of genes aberrantly expressed in cancer is essential for better understanding tumors and identifying key genes that could be therapeutically targeted. Results: We developed a quantitative analysis approach to investigate the main biological relationships among different regulatory elements and target genes; we applied it to Ovarian Serous Cystadenocarcinoma and 177 target genes belonging to three main pathways (DNA REPAIR, STEM CELLS and GLUCOSE METABOLISM) relevant for this tumor. Combining data from ENCODE and TCGA datasets, we built a predictive linear model for the regulation of each target gene, assessing the relationships between its expression, promoter methylation, expression of genes in the same or in the other pathways and of putative transcription factors. We proved the reliability and significance of our approach in a similar tumor type (basal-like Breast cancer) and using a different existing algorithm (ARACNe), and we obtained experimental confirmations on potentially interesting results. Conclusions: The analysis of the proposed models allowed disclosing the relations between a gene and its related biological processes, the interconnections between the different gene sets, and the evaluation of the relevant regulatory elements at single gene level. This led to the identification of already known regulators and/or gene correlations and to unveil a set of still unknown and potentially interesting biological relationships for their pharmacological and clinical use. © 2021, The Author(s). 
650 0 4 |a algorithm 
650 0 4 |a Algorithms 
650 0 4 |a Alkylation 
650 0 4 |a Analysis approach 
650 0 4 |a Biological relationships 
650 0 4 |a Cancer 
650 0 4 |a Diseases 
650 0 4 |a gene expression profiling 
650 0 4 |a Gene Expression Profiling 
650 0 4 |a gene expression regulation 
650 0 4 |a Gene expression regulation 
650 0 4 |a Gene Expression Regulation 
650 0 4 |a Gene Expression Regulation, Neoplastic 
650 0 4 |a gene regulatory network 
650 0 4 |a Gene Regulatory Networks 
650 0 4 |a In-depth analysis 
650 0 4 |a Linear modeling 
650 0 4 |a Machine learning 
650 0 4 |a Machine learning 
650 0 4 |a metabolism 
650 0 4 |a Predictive modeling 
650 0 4 |a Predictive models 
650 0 4 |a Promoter methylation 
650 0 4 |a Regulation networks 
650 0 4 |a Regulatory elements 
650 0 4 |a Regulatory network 
650 0 4 |a Regulatory network 
650 0 4 |a reproducibility 
650 0 4 |a Reproducibility of Results 
650 0 4 |a Stem cells 
650 0 4 |a Target genes 
650 0 4 |a Transcription 
650 0 4 |a transcription factor 
650 0 4 |a Transcription Factors 
650 0 4 |a Tumors 
700 1 |a Damia, G.  |e author 
700 1 |a Fratelli, M.  |e author 
700 1 |a Ganzinelli, M.  |e author 
700 1 |a Guffanti, F.  |e author 
700 1 |a Masseroli, M.  |e author 
700 1 |a Matteucci, M.  |e author 
700 1 |a Regondi, C.  |e author 
773 |t BMC Bioinformatics