Immune microenvironment, homologous recombination deficiency, and therapeutic response to neoadjuvant chemotherapy in triple-negative breast cancer: Japan Breast Cancer Research Group (JBCRG)22 TR

Background: Triple-negative breast cancer (TNBC) is a biologically diverse disease, with characteristics such as homologous recombination deficiency (HRD), gene mutation, and immune reactions. Japan Breast Cancer Research Group 22 is a multicenter trial examining TNBC’s response to neoadjuvant chemo...

Full description

Bibliographic Details
Main Authors: Aogi, K. (Author), Bando, H. (Author), Chiba, T. (Author), Haga, H. (Author), Ikarashi, D. (Author), Kadoya, T. (Author), Kawaguchi, K. (Author), Kitano, S. (Author), Masuda, N. (Author), Morita, S. (Author), Nagai, S. (Author), Nakayama, T. (Author), Ohno, S. (Author), Ohtani, S. (Author), Saji, S. (Author), Takahashi, M. (Author), Toi, M. (Author), Ueno, T. (Author), Velaga, R. (Author), Yamanaka, T. (Author), Yamashita, M. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04909nam a2200769Ia 4500
001 10.1186-s12916-022-02332-1
008 220510s2022 CNT 000 0 und d
020 |a 17417015 (ISSN) 
245 1 0 |a Immune microenvironment, homologous recombination deficiency, and therapeutic response to neoadjuvant chemotherapy in triple-negative breast cancer: Japan Breast Cancer Research Group (JBCRG)22 TR 
260 0 |b BioMed Central Ltd  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s12916-022-02332-1 
520 3 |a Background: Triple-negative breast cancer (TNBC) is a biologically diverse disease, with characteristics such as homologous recombination deficiency (HRD), gene mutation, and immune reactions. Japan Breast Cancer Research Group 22 is a multicenter trial examining TNBC’s response to neoadjuvant chemotherapy (NAC) according to the HRD status. This translational research investigated the clinical significance of the immune microenvironment of TNBC in association with HRD, tumor BRCA1/2 (tBRCA1/2) mutation, and response to NAC. Methods: Patients aged below 65 years with high HRD or germline BRCA1/2 (gBRCA1/2) mutation randomly received paclitaxel + carboplatin (group A1) or eribulin + carboplatin (A2), followed by anthracycline. Patients aged below 65 years with low HRD or those aged 65 years or older without gBRCA1/2 mutation randomly received eribulin + cyclophosphamide (B1) or eribulin + capecitabine (B2); nonresponders to the first four cycles of the therapy received anthracycline. A pathological complete response (pCR) was defined as the absence of residual cancer cells in the tissues. Pretreatment biopsy specimens were stained by multiplexed fluorescent immunohistochemistry using antibodies against CD3, CD4, CD8, Foxp3, CD204, and pan-cytokeratin. Immune cells with specific phenotypes were counted per mm2 in cancer cell nests (intratumor) and stromal regions. The immune cell densities were compared with clinicopathological and genetic factors including tumor response. Results: This study analyzed 66 samples. T1 tumors had a significantly higher density of intratumoral CD8+ T cells than T2 or larger tumors. The tBRCA1/2 mutation or HRD status was not associated with the density of any immune cell. The density of intratumoral and stromal CD4+ T cells was higher in patients showing pCR than in those without pCR. In a multivariate analysis, intratumoral and stromal CD4+ T cell density significantly predicted pCR independent of age, chemotherapy dose, HRD status, and treatment groups (P = 0.009 and 0.0057, respectively). In a subgroup analysis, the predictive value of intratumoral and stromal CD4+ T cell density persisted in the platinum-containing chemotherapy group (A1+A2) but not in the non-platinum-containing group (B1+B2). Conclusions: Intratumoral and stromal CD4+ T cell density was an independent predictor of pCR in patients with TNBC. A larger study is warranted to confirm the results. Trial registration: UMIN000023162. © 2022, The Author(s). 
650 0 4 |a anthracycline 
650 0 4 |a Anthracyclines 
650 0 4 |a antineoplastic agent 
650 0 4 |a Antineoplastic Combined Chemotherapy Protocols 
650 0 4 |a BRCA1/2 
650 0 4 |a carboplatin 
650 0 4 |a Carboplatin 
650 0 4 |a CD8+ T lymphocyte 
650 0 4 |a CD8-Positive T-Lymphocytes 
650 0 4 |a clinical trial 
650 0 4 |a Eribulin 
650 0 4 |a genetics 
650 0 4 |a homologous recombination 
650 0 4 |a Homologous Recombination 
650 0 4 |a Homologous recombination deficiency (HRD) 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a Immune microenvironment 
650 0 4 |a Japan 
650 0 4 |a multicenter study 
650 0 4 |a Neoadjuvant chemotherapy 
650 0 4 |a neoadjuvant therapy 
650 0 4 |a Neoadjuvant Therapy 
650 0 4 |a paclitaxel 
650 0 4 |a Paclitaxel 
650 0 4 |a pathology 
650 0 4 |a Platinum 
650 0 4 |a procedures 
650 0 4 |a triple negative breast cancer 
650 0 4 |a Triple Negative Breast Neoplasms 
650 0 4 |a Triple-negative breast cancer 
650 0 4 |a tumor microenvironment 
650 0 4 |a Tumor Microenvironment 
700 1 |a Aogi, K.  |e author 
700 1 |a Bando, H.  |e author 
700 1 |a Chiba, T.  |e author 
700 1 |a Haga, H.  |e author 
700 1 |a Ikarashi, D.  |e author 
700 1 |a Kadoya, T.  |e author 
700 1 |a Kawaguchi, K.  |e author 
700 1 |a Kitano, S.  |e author 
700 1 |a Masuda, N.  |e author 
700 1 |a Morita, S.  |e author 
700 1 |a Nagai, S.  |e author 
700 1 |a Nakayama, T.  |e author 
700 1 |a Ohno, S.  |e author 
700 1 |a Ohtani, S.  |e author 
700 1 |a Saji, S.  |e author 
700 1 |a Takahashi, M.  |e author 
700 1 |a Toi, M.  |e author 
700 1 |a Ueno, T.  |e author 
700 1 |a Velaga, R.  |e author 
700 1 |a Yamanaka, T.  |e author 
700 1 |a Yamashita, M.  |e author 
773 |t BMC Medicine