Conductive nanocomposite hydrogel and mesenchymal stem cells for the treatment of myocardial infarction and non-invasive monitoring via PET/CT

Background: Injectable hydrogels have great promise in the treatment of myocardial infarction (MI); however, the lack of electromechanical coupling of the hydrogel to the host myocardial tissue and the inability to monitor the implantation may compromise a successful treatment. The introduction of c...

Full description

Bibliographic Details
Main Authors: Jiang, D. (Author), Lan, X. (Author), Qian, R. (Author), Qin, C. (Author), Shao, F. (Author), Wang, K. (Author), Zheng, D. (Author), Zhu, K. (Author), Zhu, Z. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03749nam a2200565Ia 4500
001 10.1186-s12951-022-01432-7
008 220706s2022 CNT 000 0 und d
020 |a 14773155 (ISSN) 
245 1 0 |a Conductive nanocomposite hydrogel and mesenchymal stem cells for the treatment of myocardial infarction and non-invasive monitoring via PET/CT 
260 0 |b BioMed Central Ltd  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s12951-022-01432-7 
520 3 |a Background: Injectable hydrogels have great promise in the treatment of myocardial infarction (MI); however, the lack of electromechanical coupling of the hydrogel to the host myocardial tissue and the inability to monitor the implantation may compromise a successful treatment. The introduction of conductive biomaterials and mesenchymal stem cells (MSCs) may solve the problem of electromechanical coupling and they have been used to treat MI. In this study, we developed an injectable conductive nanocomposite hydrogel (GNR@SN/Gel) fabricated by gold nanorods (GNRs), synthetic silicate nanoplatelets (SNs), and poly(lactide-co-glycolide)-b-poly (ethylene glycol)-b-poly(lactide-co-glycolide) (PLGA-PEG-PLGA). The hydrogel was used to encapsulate MSCs and 68Ga3+ cations, and was then injected into the myocardium of MI rats to monitor the initial hydrogel placement and to study the therapeutic effect via 18F-FDG myocardial PET imaging. Results: Our data showed that SNs can act as a sterically stabilized protective shield for GNRs, and that mixing SNs with GNRs yields uniformly dispersed and stabilized GNR dispersions (GNR@SN) that meet the requirements of conductive nanofillers. We successfully constructed a thermosensitive conductive nanocomposite hydrogel by crosslinking GNR@SN with PLGA2000-PEG3400-PLGA2000, where SNs support the proliferation of MSCs. The cation-exchange capability of SNs was used to adsorb 68Ga3+ to locate the implanted hydrogel in myocardium via PET/CT. The combination of MSCs and the conductive hydrogel had a protective effect on both myocardial viability and cardiac function in MI rats compared with controls, as revealed by 18F-FDG myocardial PET imaging in early and late stages and ultrasound; this was further validated by histopathological investigations. Conclusions: The combination of MSCs and the GNR@SN/Gel conductive nanocomposite hydrogel offers a promising strategy for MI treatment. Graphical Abstract: [Figure not available: see fulltext.]. © 2022, The Author(s). 
650 0 4 |a Cardiology 
650 0 4 |a Cell culture 
650 0 4 |a Conductive hydrogel 
650 0 4 |a Conductive hydrogel 
650 0 4 |a Crosslinking 
650 0 4 |a Flowcharting 
650 0 4 |a Gold 
650 0 4 |a Gold nanorod 
650 0 4 |a Gold nanorods 
650 0 4 |a Hydrogels 
650 0 4 |a Mesenchymal stem cell 
650 0 4 |a Mesenchymal stem cells 
650 0 4 |a Myocardial infarction 
650 0 4 |a Myocardial Infarction 
650 0 4 |a Nanocomposite hydrogels 
650 0 4 |a Nanocomposites 
650 0 4 |a Nanoplatelet 
650 0 4 |a Nanorods 
650 0 4 |a Poly lactide-co-glycolide 
650 0 4 |a Polyethylene glycols 
650 0 4 |a Polylactide-co-glycolide 
650 0 4 |a Poly-lactide-co-glycolide 
650 0 4 |a Positive ions 
650 0 4 |a Positron emission tomography 
650 0 4 |a Positron emission tomography (PET) 
650 0 4 |a Rats 
650 0 4 |a Silicates 
650 0 4 |a Stem cells 
700 1 0 |a Jiang, D.  |e author 
700 1 0 |a Lan, X.  |e author 
700 1 0 |a Qian, R.  |e author 
700 1 0 |a Qin, C.  |e author 
700 1 0 |a Shao, F.  |e author 
700 1 0 |a Wang, K.  |e author 
700 1 0 |a Zheng, D.  |e author 
700 1 0 |a Zhu, K.  |e author 
700 1 0 |a Zhu, Z.  |e author 
773 |t Journal of Nanobiotechnology