Targeting hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase for lignin modification in Brachypodium distachyon

Background: Hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase (HCT) is a central enzyme of the so-called “esters” pathway to monolignols. As originally envisioned, HCT functions twice in this pathway, to form coumaroyl shikimate and then, in the “reverse” direction, to convert caffeoyl sh...

Full description

Bibliographic Details
Main Authors: Barros, J. (Author), Dixon, R.A (Author), Escamilla-Trevino, L. (Author), Gallego-Giraldo, L. (Author), Pu, Y. (Author), Ragauskas, A. (Author), Serrani-Yarce, J.C (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
RNA
Online Access:View Fulltext in Publisher
LEADER 04054nam a2200673Ia 4500
001 10.1186-s13068-021-01905-1
008 220427s2021 CNT 000 0 und d
020 |a 17546834 (ISSN) 
245 1 0 |a Targeting hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase for lignin modification in Brachypodium distachyon 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s13068-021-01905-1 
520 3 |a Background: Hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase (HCT) is a central enzyme of the so-called “esters” pathway to monolignols. As originally envisioned, HCT functions twice in this pathway, to form coumaroyl shikimate and then, in the “reverse” direction, to convert caffeoyl shikimate to caffeoyl CoA. The discovery of a caffeoyl shikimate esterase (CSE) that forms caffeic acid directly from caffeoyl shikimate calls into question the need for the reverse HCT reaction in lignin biosynthesis. Loss of function of HCT gives severe growth phenotypes in several dicot plants, but less so in some monocots, questioning whether this enzyme, and therefore the shikimate shunt, plays the same role in both monocots and dicots. The model grass Brachypodium distachyon has two HCT genes, but lacks a classical CSE gene. This study was therefore conducted to evaluate the utility of HCT as a target for lignin modification in a species with an “incomplete” shikimate shunt. Results: The kinetic properties of recombinant B. distachyon HCTs were compared with those from Arabidopsis thaliana, Medicago truncatula, and Panicum virgatum (switchgrass) for both the forward and reverse reactions. Along with two M. truncatula HCTs, B. distachyon HCT2 had the least kinetically unfavorable reverse HCT reaction, and this enzyme is induced when HCT1 is down-regulated. Down regulation of B. distachyon HCT1, or co-down-regulation of HCT1 and HCT2, by RNA interference led to reduced lignin levels, with only modest changes in lignin composition and molecular weight. Conclusions: Down-regulation of HCT1, or co-down-regulation of both HCT genes, in B. distachyon results in less extensive changes in lignin content/composition and cell wall structure than observed following HCT down-regulation in dicots, with little negative impact on biomass yield. Nevertheless, HCT down-regulation leads to significant improvements in biomass saccharification efficiency, making this gene a preferred target for biotechnological improvement of grasses for bioprocessing. © 2021, The Author(s). 
650 0 4 |a Arabidopsis thaliana 
650 0 4 |a Arabidopsis thaliana 
650 0 4 |a Biochemistry 
650 0 4 |a Biochemistry 
650 0 4 |a Brachypodium distachyon 
650 0 4 |a Cell wall structure 
650 0 4 |a Dicotyledoneae 
650 0 4 |a enzyme 
650 0 4 |a Enzymes 
650 0 4 |a Enzymes 
650 0 4 |a ester 
650 0 4 |a Esters 
650 0 4 |a Esters 
650 0 4 |a Genes 
650 0 4 |a Genes 
650 0 4 |a Kinetic properties 
650 0 4 |a lignin 
650 0 4 |a Lignin 
650 0 4 |a Lignin biosynthesis 
650 0 4 |a Lignin modification 
650 0 4 |a Lignin modifications 
650 0 4 |a Liliopsida 
650 0 4 |a Medicago truncatula 
650 0 4 |a Medicago truncatula 
650 0 4 |a Monocot 
650 0 4 |a monocotyledon 
650 0 4 |a NMR analysis 
650 0 4 |a nuclear magnetic resonance 
650 0 4 |a Panicum virgatum 
650 0 4 |a Phenylpropanoid biosynthesis 
650 0 4 |a Poaceae 
650 0 4 |a reaction kinetics 
650 0 4 |a Reverse reactions 
650 0 4 |a RNA 
650 0 4 |a RNA interference 
650 0 4 |a RNA interference 
650 0 4 |a Saccharification 
650 0 4 |a Saccharification 
650 0 4 |a Saccharification efficiency 
700 1 |a Barros, J.  |e author 
700 1 |a Dixon, R.A.  |e author 
700 1 |a Escamilla-Trevino, L.  |e author 
700 1 |a Gallego-Giraldo, L.  |e author 
700 1 |a Pu, Y.  |e author 
700 1 |a Ragauskas, A.  |e author 
700 1 |a Serrani-Yarce, J.C.  |e author 
773 |t Biotechnology for Biofuels