Tagasaste, leucaena and paulownia: three industrial crops for energy and hemicelluloses production

Background: Burning fast-growing trees for energy production can be an effective alternative to coal combustion. Thus, lignocellulosic material, which can be used to obtain chemicals with a high added value, is highly abundant, easily renewed and usually inexpensive. In this work, hemicellulose extr...

Full description

Bibliographic Details
Main Authors: Díaz, M.J (Author), García, J.C (Author), Giráldez, I. (Author), Loaiza, J.M (Author), López, F. (Author), Palma, A. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04547nam a2200709Ia 4500
001 10.1186-s13068-021-01930-0
008 220427s2021 CNT 000 0 und d
020 |a 17546834 (ISSN) 
245 1 0 |a Tagasaste, leucaena and paulownia: three industrial crops for energy and hemicelluloses production 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s13068-021-01930-0 
520 3 |a Background: Burning fast-growing trees for energy production can be an effective alternative to coal combustion. Thus, lignocellulosic material, which can be used to obtain chemicals with a high added value, is highly abundant, easily renewed and usually inexpensive. In this work, hemicellulose extraction by acid hydrolysis of plant biomass from three different crops (Chamaecytisus proliferus, Leucaena diversifolia and Paulownia trihybrid) was modelled and the resulting solid residues were used for energy production. Results: The influence of the nature of the lignocellulosic raw material and the operating conditions used to extract the hemicellulose fraction on the heat capacity and activation energy of the subsequent combustion process was examined. The heat power and the activation energy of the combustion process were found to depend markedly on the hemicellulose content of the raw material. Thus, a low content in hemicelluloses resulted in a lower increased energy yield after acid hydrolysis stage. The process was also influenced by the operating conditions of the acid hydrolysis treatment, which increased the gross calorific value (GCV) of the solid residue by 0.6–9.7% relative to the starting material. In addition, the activation energy of combustion of the acid hydrolysis residues from Chamaecytisus proliferus (Tagasaste) and Paulownia trihybrid (Paulownia) was considerably lower than that for the starting materials, the difference increasing with increasing degree of conversion as well as with increasing temperature and acid concentration in the acid hydrolysis. The activation energy of combustion of the solid residues from acid hydrolysis of tagasaste and paulownia decreased markedly with increasing degree of conversion, and also with increasing temperature and acid concentration in the acid hydrolysis treatment. No similar trend was observed in Leucaena diversifolia (Leucaena) owing to its low content in hemicelluloses. Conclusions: Acid hydrolysis of tagasaste, leucaena and paulownia provided a valorizable liquor containing a large amount of hemicelluloses and a solid residue with an increased heat power amenable to efficient valorization by combustion. There are many potential applications of the hemicelluloses-rich and lignin-rich fraction, for example as multi-components of bio-based feedstocks for 3D printing, for energy and other value-added chemicals. [Figure not available: see fulltext.]. © 2021, The Author(s). 
650 0 4 |a 3D printers 
650 0 4 |a Acidolysis 
650 0 4 |a activation energy 
650 0 4 |a Activation energy 
650 0 4 |a Activation Energy 
650 0 4 |a Biomass combustion 
650 0 4 |a biotechnology 
650 0 4 |a Cellulosic ethanol 
650 0 4 |a Chamaecystis palmensis 
650 0 4 |a Chamaecytisus prolifer 
650 0 4 |a coal combustion 
650 0 4 |a Coal combustion 
650 0 4 |a Coal industry 
650 0 4 |a Combustion 
650 0 4 |a crop plant 
650 0 4 |a Crops 
650 0 4 |a Degree of conversion 
650 0 4 |a experimental study 
650 0 4 |a extraction method 
650 0 4 |a Farm Crops 
650 0 4 |a Gross calorific values 
650 0 4 |a heat capacity 
650 0 4 |a Hemicellulose extraction 
650 0 4 |a Hemicellulose extraction 
650 0 4 |a Hemicellulose fraction 
650 0 4 |a hydrolysis 
650 0 4 |a Hydrolysis 
650 0 4 |a Hydrolysis 
650 0 4 |a Increasing temperatures 
650 0 4 |a Leucaena 
650 0 4 |a Leucaena 
650 0 4 |a Leucaena diversifolia 
650 0 4 |a Lignocellulosic biomass 
650 0 4 |a Lignocellulosic material 
650 0 4 |a Lignocellulosic raw materials 
650 0 4 |a Paulownia 
650 0 4 |a Paulownia 
650 0 4 |a Specific heat 
650 0 4 |a Specific Heat 
650 0 4 |a Tagasaste 
650 0 4 |a Temperature 
650 0 4 |a Temperature 
650 0 4 |a Value-added chemicals 
700 1 |a Díaz, M.J.  |e author 
700 1 |a García, J.C.  |e author 
700 1 |a Giráldez, I.  |e author 
700 1 |a Loaiza, J.M.  |e author 
700 1 |a López, F.  |e author 
700 1 |a Palma, A.  |e author 
773 |t Biotechnology for Biofuels