Disulfide bond engineering of AppA phytase for increased thermostability requires co-expression of protein disulfide isomerase in Pichia pastoris

Background: Phytases are widely used commercially as dietary supplements for swine and poultry to increase the digestibility of phytic acid. Enzyme development has focused on increasing thermostability to withstand the high temperatures during industrial steam pelleting. Increasing thermostability o...

Full description

Bibliographic Details
Main Authors: Blinco, J.-A (Author), Chen, X. (Author), Luangthongkam, P. (Author), Luna-Flores, C.H (Author), Mahler, S. (Author), Navone, L. (Author), Speight, R. (Author), Vogl, T. (Author), von Hellens, J. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
pH
Online Access:View Fulltext in Publisher
LEADER 03684nam a2200637Ia 4500
001 10.1186-s13068-021-01936-8
008 220427s2021 CNT 000 0 und d
020 |a 17546834 (ISSN) 
245 1 0 |a Disulfide bond engineering of AppA phytase for increased thermostability requires co-expression of protein disulfide isomerase in Pichia pastoris 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s13068-021-01936-8 
520 3 |a Background: Phytases are widely used commercially as dietary supplements for swine and poultry to increase the digestibility of phytic acid. Enzyme development has focused on increasing thermostability to withstand the high temperatures during industrial steam pelleting. Increasing thermostability often reduces activity at gut temperatures and there remains a demand for improved phyases for a growing market. Results: In this work, we present a thermostable variant of the E. coli AppA phytase, ApV1, that contains an extra non-consecutive disulfide bond. Detailed biochemical characterisation of ApV1 showed similar activity to the wild type, with no statistical differences in kcat and KM for phytic acid or in the pH and temperature activity optima. Yet, it retained approximately 50% activity after incubations for 20 min at 65, 75 and 85 °C compared to almost full inactivation of the wild-type enzyme. Production of ApV1 in Pichia pastoris (Komagataella phaffi) was much lower than the wild-type enzyme due to the presence of the extra non-consecutive disulfide bond. Production bottlenecks were explored using bidirectional promoters for co-expression of folding chaperones. Co-expression of protein disulfide bond isomerase (Pdi) increased production of ApV1 by ~ 12-fold compared to expression without this folding catalyst and restored yields to similar levels seen with the wild-type enzyme. Conclusions: Overall, the results show that protein engineering for enhanced enzymatic properties like thermostability may result in folding complexity and decreased production in microbial systems. Hence parallel development of improved production strains is imperative to achieve the desirable levels of recombinant protein for industrial processes. © 2021, The Author(s). 
650 0 4 |a biochemistry 
650 0 4 |a Chaperone 
650 0 4 |a Cobalt compounds 
650 0 4 |a coliform bacterium 
650 0 4 |a Covalent bonds 
650 0 4 |a Dietary supplements 
650 0 4 |a Disulfide bond 
650 0 4 |a Enzymatic properties 
650 0 4 |a enzyme activity 
650 0 4 |a Enzyme development 
650 0 4 |a Enzymes 
650 0 4 |a Escherichia coli 
650 0 4 |a Escherichia coli 
650 0 4 |a Folding 
650 0 4 |a gene expression 
650 0 4 |a incubation 
650 0 4 |a Industrial processs 
650 0 4 |a Parallel development 
650 0 4 |a pH 
650 0 4 |a phosphatase 
650 0 4 |a Phytase 
650 0 4 |a Pichia pastoris 
650 0 4 |a Production bottlenecks 
650 0 4 |a protein 
650 0 4 |a Protein disulfide isomerases 
650 0 4 |a Protein engineering 
650 0 4 |a Recombinant proteins 
650 0 4 |a Stability 
650 0 4 |a Statistical differences 
650 0 4 |a Sulfur compounds 
650 0 4 |a temperature anomaly 
650 0 4 |a Thermostability 
650 0 4 |a yeast 
650 0 4 |a Yeast 
700 1 |a Blinco, J.-A.  |e author 
700 1 |a Chen, X.  |e author 
700 1 |a Luangthongkam, P.  |e author 
700 1 |a Luna-Flores, C.H.  |e author 
700 1 |a Mahler, S.  |e author 
700 1 |a Navone, L.  |e author 
700 1 |a Speight, R.  |e author 
700 1 |a Vogl, T.  |e author 
700 1 |a von Hellens, J.  |e author 
773 |t Biotechnology for Biofuels