Aliphatic extractive effects on acetic acid catalysis of typical agricultural residues to xylo-oligosaccharide and enzymatic hydrolyzability of cellulose

Background: Xylo-oligosaccharide is the spotlight of functional sugar that improves the economic benefits of lignocellulose biorefinery. Acetic acid acidolysis technology provides a promising application for xylo-oligosaccharide commercial production, but it is restricted by the aliphatic (wax-like)...

Full description

Bibliographic Details
Main Authors: Cao, R. (Author), Guo, J. (Author), Huang, K. (Author), Xu, Y. (Author), Zhang, J. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
pH
Online Access:View Fulltext in Publisher
LEADER 03134nam a2200709Ia 4500
001 10.1186-s13068-021-01952-8
008 220427s2021 CNT 000 0 und d
020 |a 17546834 (ISSN) 
245 1 0 |a Aliphatic extractive effects on acetic acid catalysis of typical agricultural residues to xylo-oligosaccharide and enzymatic hydrolyzability of cellulose 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s13068-021-01952-8 
520 3 |a Background: Xylo-oligosaccharide is the spotlight of functional sugar that improves the economic benefits of lignocellulose biorefinery. Acetic acid acidolysis technology provides a promising application for xylo-oligosaccharide commercial production, but it is restricted by the aliphatic (wax-like) compounds, which cover the outer and inner surfaces of plants. Results: We removed aliphatic compounds by extraction with two organic solvents. The benzene–ethanol extraction increased the yield of acidolyzed xylo-oligosaccharides of corncob, sugarcane bagasse, wheat straw, and poplar sawdust by 14.79, 21.05, 16.68, and 7.26% while ethanol extraction increased it by 11.88, 17.43, 1.26, and 13.64%, respectively. Conclusion: The single ethanol extraction was safer, more environmentally friendly, and more cost-effective than benzene–ethanol solvent. In short, organic solvent extraction provided a promising auxiliary method for the selective acidolysis of herbaceous xylan to xylo-oligosaccharides, while it had minimal impact on woody poplar. © 2021, The Author(s). 
650 0 4 |a acetic acid 
650 0 4 |a Acetic acid 
650 0 4 |a Acetic Acid 
650 0 4 |a Acetic acid acidolysis 
650 0 4 |a Acid catalysis 
650 0 4 |a Agricultural residues 
650 0 4 |a Agricultural wastes 
650 0 4 |a Aliphatic compounds 
650 0 4 |a Aliphatic Compounds 
650 0 4 |a Aliphatic extractives 
650 0 4 |a aliphatic hydrocarbon 
650 0 4 |a Benzene 
650 0 4 |a Benzene 
650 0 4 |a Benzene refining 
650 0 4 |a catalysis 
650 0 4 |a cellulose 
650 0 4 |a Cellulose 
650 0 4 |a Cellulose 
650 0 4 |a Commercial productions 
650 0 4 |a Cost effectiveness 
650 0 4 |a Cost Effectiveness 
650 0 4 |a Economic benefits 
650 0 4 |a Enzymatic hydrolysis 
650 0 4 |a Ethanol 
650 0 4 |a Ethanol 
650 0 4 |a Ethanol extraction 
650 0 4 |a Extraction 
650 0 4 |a extraction method 
650 0 4 |a hydrolysis 
650 0 4 |a Hydrolyzability 
650 0 4 |a lignin 
650 0 4 |a Lignocellulose biorefinery 
650 0 4 |a Oligosaccharides 
650 0 4 |a Organic solvents 
650 0 4 |a pH 
650 0 4 |a plant residue 
650 0 4 |a Plants (botany) 
650 0 4 |a Populus 
650 0 4 |a reaction kinetics 
650 0 4 |a Solvent extraction 
650 0 4 |a Solvents 
650 0 4 |a Sugar-cane bagasse 
650 0 4 |a Xylo- oligosaccharides 
650 0 4 |a Xylo-oligosaccharides 
700 1 |a Cao, R.  |e author 
700 1 |a Guo, J.  |e author 
700 1 |a Huang, K.  |e author 
700 1 |a Xu, Y.  |e author 
700 1 |a Zhang, J.  |e author 
773 |t Biotechnology for Biofuels