Modular biosynthesis of plant hemicellulose and its impact on yeast cells

Background: The carbohydrate polymers that encapsulate plants cells have benefited humans for centuries and have valuable biotechnological uses. In the past 5 years, exciting possibilities have emerged in the engineering of polysaccharide-based biomaterials. Despite impressive advances on bacterial...

Full description

Bibliographic Details
Main Authors: Pauly, M. (Author), Robert, M. (Author), Stritt, F. (Author), Voiniciuc, C. (Author), Waldhauer, J. (Author), Yang, B. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04053nam a2200733Ia 4500
001 10.1186-s13068-021-01985-z
008 220427s2021 CNT 000 0 und d
020 |a 17546834 (ISSN) 
245 1 0 |a Modular biosynthesis of plant hemicellulose and its impact on yeast cells 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s13068-021-01985-z 
520 3 |a Background: The carbohydrate polymers that encapsulate plants cells have benefited humans for centuries and have valuable biotechnological uses. In the past 5 years, exciting possibilities have emerged in the engineering of polysaccharide-based biomaterials. Despite impressive advances on bacterial cellulose-based hydrogels, comparatively little is known about how plant hemicelluloses can be reconstituted and modulated in cells suitable for biotechnological purposes. Results: Here, we assembled cellulose synthase-like A (CSLA) enzymes using an optimized Pichia pastoris platform to produce tunable heteromannan (HM) polysaccharides in yeast. By swapping the domains of plant mannan and glucomannan synthases, we engineered chimeric CSLA proteins that made β-1,4-linked mannan in quantities surpassing those of the native enzymes while minimizing the burden on yeast growth. Prolonged expression of a glucomannan synthase from Amorphophallus konjac was toxic to yeast cells: reducing biomass accumulation and ultimately leading to compromised cell viability. However, an engineered glucomannan synthase as well as CSLA pure mannan synthases and a CSLC glucan synthase did not inhibit growth. Interestingly, Pichia cell size could be increased or decreased depending on the composition of the CSLA protein sequence. HM yield and glucose incorporation could be further increased by co-expressing chimeric CSLA proteins with a MANNAN-SYNTHESIS-RELATED (MSR) co-factor from Arabidopsis thaliana. Conclusion: The results provide novel routes for the engineering of polysaccharide-based biomaterials that are needed for a sustainable bioeconomy. The characterization of chimeric cellulose synthase-like enzymes in yeast offers an exciting avenue to produce plant polysaccharides in a tunable manner. Furthermore, cells modified with non-toxic plant polysaccharides such as β-mannan offer a modular chassis to produce and encapsulate sensitive cargo such as therapeutic proteins. Graphic abstract: [Figure not available: see fulltext.]. © 2021, The Author(s). 
650 0 4 |a Amorphophallus konjac 
650 0 4 |a Arabidopsis thaliana 
650 0 4 |a Arabidopsis thaliana 
650 0 4 |a Bacteria (microorganisms) 
650 0 4 |a Bacterial cellulose 
650 0 4 |a Biochemistry 
650 0 4 |a Biochemistry 
650 0 4 |a Bioeconomy 
650 0 4 |a Biomass accumulation 
650 0 4 |a Biosynthesis 
650 0 4 |a Biosynthesis 
650 0 4 |a biotechnology 
650 0 4 |a Biotechnology 
650 0 4 |a Biotechnology 
650 0 4 |a Carbohydrate polymers 
650 0 4 |a cell 
650 0 4 |a Cell wall biosynthesis 
650 0 4 |a Cells 
650 0 4 |a cellulose 
650 0 4 |a Cellulose 
650 0 4 |a Cellulose 
650 0 4 |a Cellulose synthase 
650 0 4 |a Chimeric enzymes 
650 0 4 |a Cytology 
650 0 4 |a Cytology 
650 0 4 |a enzyme activity 
650 0 4 |a Enzymes 
650 0 4 |a Enzymes 
650 0 4 |a Glucan 
650 0 4 |a Glucomannan 
650 0 4 |a Glycosyltransferase 
650 0 4 |a Hemicellulose 
650 0 4 |a Mannan 
650 0 4 |a metabolism 
650 0 4 |a Pichia 
650 0 4 |a Pichia pastoris 
650 0 4 |a Pichia pastoris 
650 0 4 |a Plant polysaccharides 
650 0 4 |a polymer 
650 0 4 |a polysaccharide 
650 0 4 |a Protein sequences 
650 0 4 |a Synthetic biology 
650 0 4 |a Therapeutic protein 
650 0 4 |a yeast 
650 0 4 |a Yeast 
700 1 |a Pauly, M.  |e author 
700 1 |a Robert, M.  |e author 
700 1 |a Stritt, F.  |e author 
700 1 |a Voiniciuc, C.  |e author 
700 1 |a Waldhauer, J.  |e author 
700 1 |a Yang, B.  |e author 
773 |t Biotechnology for Biofuels