Enhanced lignin biodegradation by consortium of white rot fungi: microbial synergistic effects and product mapping

Background: As one of the major components of lignocellulosic biomass, lignin has been considered as the most abundant renewable aromatic feedstock in the world. Comparing with thermal or catalytic strategies for lignin degradation, biological conversion is a promising approach featuring with mild c...

Full description

Bibliographic Details
Main Authors: Cui, T. (Author), Fei, Q. (Author), Guo, H. (Author), Li, C. (Author), Ma, Y. (Author), Tian, H. (Author), Wang, W. (Author), Yuan, B. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04001nam a2200721Ia 4500
001 10.1186-s13068-021-02011-y
008 220427s2021 CNT 000 0 und d
020 |a 17546834 (ISSN) 
245 1 0 |a Enhanced lignin biodegradation by consortium of white rot fungi: microbial synergistic effects and product mapping 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s13068-021-02011-y 
520 3 |a Background: As one of the major components of lignocellulosic biomass, lignin has been considered as the most abundant renewable aromatic feedstock in the world. Comparing with thermal or catalytic strategies for lignin degradation, biological conversion is a promising approach featuring with mild conditions and diversity, and has received great attention nowadays. Results: In this study, a consortium of white rot fungi composed of Lenzites betulina and Trametes versicolor was employed to enhance the ligninolytic enzyme activity of laccase (Lac) and manganese peroxidase (MnP) under microbial synergism. The maximum enzymatic activity of Lac and MnP was individually 18.06 U mL−1 and 13.58 U mL−1 along with a lignin degradation rate of 50% (wt/wt), which were achieved from batch cultivation of the consortium. The activities of Lac and MnP obtained from the consortium were both improved more than 40%, as compared with monocultures of L. betulina or T. versicolor under the same culture condition. The enhanced biodegradation performance was in accordance with the results observed from scanning electron microscope (SEM) of lignin samples before and after biodegradation, and secondary-ion mass spectrometry (SIMS). Finally, the analysis of heteronuclear single quantum coherence (HSQC) NMR and gas chromatography–mass spectrometry (GC–MS) provided a comprehensive product mapping of the lignin biodegradation, suggesting that the lignin has undergone depolymerization of the macromolecules, side-chain cleavage, and aromatic ring-opening reactions. Conclusions: Our results revealed a considerable escalation on the enzymatic activity obtained in a short period from the cultivation of the L. betulina or T. versicolor due to the enhanced microbial synergistic effects, providing a potential bioconversion route for lignin utilization. © 2021, The Author(s). 
650 0 4 |a biodegradation 
650 0 4 |a Biodegradation 
650 0 4 |a Biodegradation 
650 0 4 |a biofuel 
650 0 4 |a Biological conversion 
650 0 4 |a biomass 
650 0 4 |a Degradation 
650 0 4 |a Enhanced biodegradation 
650 0 4 |a Enzymatic activities 
650 0 4 |a enzyme activity 
650 0 4 |a Enzyme activity 
650 0 4 |a Fungi 
650 0 4 |a Fungi 
650 0 4 |a fungus 
650 0 4 |a Gas chromatography 
650 0 4 |a Gas Chromatography 
650 0 4 |a Heteronuclear single-quantum coherences 
650 0 4 |a Laccase 
650 0 4 |a Lenzites betulina 
650 0 4 |a lignin 
650 0 4 |a Lignin 
650 0 4 |a Lignin biodegradation 
650 0 4 |a Lignin biodegradation 
650 0 4 |a Ligninolytic enzymes 
650 0 4 |a Lignocellulosic biomass 
650 0 4 |a Manganese compounds 
650 0 4 |a Manganese Compounds 
650 0 4 |a manganese oxide 
650 0 4 |a Manganese peroxidase 
650 0 4 |a Manganese peroxidase 
650 0 4 |a Mapping 
650 0 4 |a Mapping 
650 0 4 |a microbial activity 
650 0 4 |a Phosphorus compounds 
650 0 4 |a Product mapping 
650 0 4 |a Quantum theory 
650 0 4 |a Scanning electron microscopy 
650 0 4 |a Secondary ion mass spectrometry 
650 0 4 |a Synergistic effect 
650 0 4 |a Trametes versicolor 
650 0 4 |a Trametes versicolor 
650 0 4 |a White rot fungi (WRF) 
700 1 |a Cui, T.  |e author 
700 1 |a Fei, Q.  |e author 
700 1 |a Guo, H.  |e author 
700 1 |a Li, C.  |e author 
700 1 |a Ma, Y.  |e author 
700 1 |a Tian, H.  |e author 
700 1 |a Wang, W.  |e author 
700 1 |a Yuan, B.  |e author 
773 |t Biotechnology for Biofuels